Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury

Lingfei Zhao, Chenxia Hu, Ping Zhang, Hua Jiang, Jianghua Chen, Lingfei Zhao, Chenxia Hu, Ping Zhang, Hua Jiang, Jianghua Chen

Abstract

Acute kidney injury (AKI) is a common, severe emergency case in clinics, with high incidence, significant mortality and increased costs. Despite development in the understanding of its pathophysiology, the therapeutic choices are still confined to dialysis and renal transplantation. Considering their antiapoptotic, immunomodulatory, antioxidative and pro-angiogenic effects, mesenchymal stem cells (MSCs) may be a promising candidate for AKI management. Based on these findings, some clinical trials have been performed, but the results are contradictory (NCT00733876, NCT01602328). The low engraftment, poor survival rate, impaired paracrine ability and delayed administration of MSCs are the four main reasons for the limited clinical efficacy. Investigators have developed a series of preconditioning strategies to improve MSC survival rates and paracrine ability. In this review, by summarizing these encouraging studies, we intend to provide a comprehensive understanding of various preconditioning strategies on AKI therapy and improve the prognosis of AKI patients by regenerative medicine.

Keywords: acute kidney injury; mesenchymal stem cells; preconditioning strategy; survival and paracrine ability.

© 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Figures

Figure 1
Figure 1
The four main factors that limit the clinical efficacy of MSCs‐based therapy. (A) The low amount of engraftment. Most delivered MSCs are trapped in unwanted organs, such as liver, lungs, and spleen. Only 1% of transplanted cells can engraft into the target tissues. (B) Poor survival rate. It is reported that more than 80%‐90% of grafted cells will die within the first week after injection due to the harsh environment in vivo. (C) Impaired paracrine ability. The regenerative effect of MSCs largely relies on their paracrine action. Impaired MSC potency/biological activity in vivo has also been reported. (D) Delayed administration. Diagnosis of AKI is still on the basis of a rise in creatinine, which may cause a delayed administration of MSCs and induce the injured kidneys to the “point of no return”
Figure 2
Figure 2
Once injected into an injured tissue, MSCs face a harsh environment, including ROS, ischemia and anoikis, which may further induce cell apoptosis. Various preconditioning strategies, such as incubation with cytokines or chemical compounds, improvement of culture condition, thermosensitive hydrogel and genetic modification, can improve the survival rate and paracrine ability of MSCs and help them migrate to the target tissue in vivo

References

    1. Liangos O, Wald R, O’Bell JW, Price L, Pereira BJ, Jaber BL. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol. 2006;1(1):43‐51.
    1. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756‐766.
    1. de Fátima Fernandes Vattimo M, da Silva NO. Uncaria tomentosa and acute ischemic kidney injury in rats. Rev Esc Enferm USP. 2011;45(1):194‐198.
    1. Pleniceanu O, Harari‐Steinberg O, Dekel B. Concise review: kidney stem/progenitor cells: differentiate, sort out, or reprogram. Stem Cells. 2010;28(9):1649‐1660.
    1. Liu KD, Brakeman PR. Renal repair and recovery. Crit Care Med. 2008;36(4 Suppl):S187‐S192.
    1. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med. 2008;59:311‐325.
    1. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585‐596.
    1. Gimble JM, Katz AJ, Bunnell BA. Adipose‐derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249‐1260.
    1. Swaminathan M, Stafford‐Smith M, Chertow GM, et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol. 2018;29(1):260‐267.
    1. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252‐260.
    1. Doorn J, Moll G, Le BK, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101‐115.
    1. Hasty KA, Cho H. Stem cell considerations for the clinician. Phys Med Rehabil Clin N Am. 2016;27(4):855‐870.
    1. Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190‐2199.
    1. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol. 2008;45(4):567‐581.
    1. Song H, Cha MJ, Song BW, et al. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells. 2010;28(3):555‐563.
    1. Chang W, Song BW, Moon JY, et al. Anti‐death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol. 2013;28(12):1529‐1536.
    1. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti‐death strategies. J Mol Cell Cardiol. 2001;33(5):907‐921.
    1. Zhang M, Mal N, Kiedrowski M, et al. SDF‐1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197‐3207.
    1. Silva L, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco P. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45.
    1. Walczak P, Zhang J, Gilad AA, et al. Dual‐modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569‐1574.
    1. Dell’Accio F, De Bari C, Luyten FP. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo . Arthritis Rheum. 2001;44(7):1608‐1619.
    1. Huang AH, Yeger‐McKeever M, Stein A, Mauck RL. Tensile properties of engineered cartilage formed from chondrocyte‐ and MSC‐laden hydrogels. Osteoarthritis Cartilage. 2008;16(9):1074‐1082.
    1. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Novel preconditioning strategies for enhancing the migratory ability of mesenchymal stem cells in acute kidney injury. Stem Cell Res Ther. 2018;9(1):225.
    1. Burst VR, Gillis M, Pütsch F, et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol. 2010;114(3):e107–e116.
    1. Li Z, Lee A, Huang M, et al. Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol. 2009;53(14):1229‐1240.
    1. He N, Zhang L, Cui J, Li Z. Bone marrow vascular niche: home for hematopoietic stem cells. Bone Marrow Res. 2014;2014:128436.
    1. Mias C, Trouche E, Seguelas MH, et al. Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells. 2008;26(7):1749‐1757.
    1. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381‐405.
    1. Tian H, Lu Y, Shah SP, Wang Q, Hong S. 14S,21R‐dihydroxy‐docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury. Stem Cells Dev. 2012;21(7):1187‐1199.
    1. Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S. Pre‐conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med. 2012;10:243.
    1. Cai J, Yu X, Zhang B, et al. Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia‐reperfusion injury. Am J Nephrol. 2014;39(6):466‐475.
    1. Liu P, Feng Y, Dong C, et al. Administration of BMSCs with muscone in rats with gentamicin‐induced AKI improves their therapeutic efficacy. PLoS ONE. 2014;9(5):e97123.
    1. Khan M, Akhtar S, Mohsin S, N Khan S, Riazuddin S. Growth factor preconditioning increases the function of diabetes‐impaired mesenchymal stem cells. Stem Cells Dev. 2011;20(1):67‐75.
    1. Lu G, Ashraf M, Haider KH. Insulin‐like growth factor‐1 preconditioning accentuates intrinsic survival mechanism in stem cells to resist ischemic injury by orchestrating protein kinase cα‐erk1/2 activation. Antioxid Redox Signal. 2012;16(3):217‐227.
    1. Xinaris C, Morigi M, Benedetti V, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant. 2013;22(3):423‐436.
    1. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006;24(4):1030‐1041.
    1. Ahmadbeigi N, Seyedjafari E, Gheisari Y, Atashi A, Omidkhoda A, Soleimani M. Surface expression of CXCR38 in unrestricted somatic stem cells and its regulation by growth factors. Cell Biol Int. 2010;34(7):687‐692.
    1. Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of human mesenchymal stem cells as three‐dimensional aggregates induces functional expression of CXCR39 that regulates adhesion to endothelial cells. J Biol Chem. 2008;283(19):13100‐13107.
    1. Xu Y, Shi T, Xu A, Zhang L. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J Cell Mol Med. 2016;20(7):1203‐1213.
    1. Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol. 2003;23(12):2146‐2154.
    1. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012;226(2):380‐393.
    1. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654‐660.
    1. Davis ME, Motion JP, Narmoneva DA, et al. Injectable self‐assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005;111(4):442‐450.
    1. Gao J, Liu R, Wu J, et al. The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose‐derived MSCs for acute kidney injury. Biomaterials. 2012;33(14):3673‐3681.
    1. Feng G, Zhang J, Li Y, et al. IGF‐1 C domain‐modified hydrogel enhances cell therapy for AKI. J Am Soc Nephrol. 2016;27(8):2357‐2369.
    1. Li W, Ma N, Ong LL, et al. Bcl‐2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8):2118‐2127.
    1. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt‐modified mesenchymal stem cells. Nat Med. 2005;11(4):367‐368.
    1. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235(4792):1043‐1046.
    1. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti‐inflammatory effects involving the mitogen‐activated protein kinase pathway. Nat Med. 2000;6(4):422‐428.
    1. Jarmi T, Agarwal A. Heme oxygenase and renal disease. Curr Hypertens Rep. 2009;11(1):56‐62.
    1. Liu N, Wang H, Han G, Tian J, Hu W, Zhang J. Alleviation of apoptosis of bone marrow‐derived mesenchymal stem cells in the acute injured kidney by heme oxygenase‐1 gene modification. Int J Biochem Cell Biol. 2015;69:85‐94.
    1. Liu N, Wang H, Han G, Cheng J, Hu W, Zhang J. Enhanced proliferation and differentiation of HO‐1 gene‐modified bone marrow‐derived mesenchymal stem cells in the acute injured kidney. Int J Mol Med. 2018;42(2):946‐956.
    1. Lee JM, Li J, Johnson DA, et al. Nrf2, a multi‐organ protector. FASEB J. 2005;19(9):1061‐1066.
    1. Tufekci KU, Civi BE, Genc S, Genc K. The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis. 2011;2011:314082.
    1. Mohammadzadeh‐Vardin M, Habibi RM, Jahanian‐Najafabadi A. Adenovirus‐mediated over‐expression of Nrf2 within mesenchymal stem cells (MSCs) protected rats against acute kidney injury. Adv Pharm Bull. 2015;5(2):201‐208.
    1. Chao J, Zhang JJ, Lin KF, Chao L. Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt‐sensitive rats. Hum Gene Ther. 1998;9(1):21‐31.
    1. Bledsoe G, Shen B, Yao Y, Zhang JJ, Chao L, Chao J. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther. 2006;17(5):545‐555.
    1. Hagiwara M, Shen B, Chao L, Chao J. Kallikrein‐modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther. 2008;19(8):807‐819.
    1. He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol. 2009;25(6):353‐358.
    1. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759‐1767.
    1. Hoogduijn MJ, Popp F, Verbeek R, et al. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol. 2010;10(12):1496‐1500.
    1. Li JH, Zhang N, Wang JA. Improved anti‐apoptotic and anti‐remodeling potency of bone marrow mesenchymal stem cells by anoxic pre‐conditioning in diabetic cardiomyopathy. J Endocrinol Invest. 2008;31(2):103‐110.
    1. Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti‐apoptotic and anti‐oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase‐1 on myocardial ischemia. Am J Physiol Heart Circ Physiol. 2010;298(5):H1320–H1329.
    1. Valle‐Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885‐1893.
    1. Garg A, Newsome PN. Bone marrow mesenchymal stem cells and liver regeneration: believe the hypoxia. Stem Cell Res Ther. 2013;4(5):108.
    1. Hoch AI, Binder BY, Genetos DC, Leach JK. Differentiation‐dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS ONE. 2012;7(4):e35579.
    1. Zhang W, Liu L, Huo Y, Yang Y, Wang Y. Hypoxia‐pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int. 2014;2014:462472.
    1. Overath JM, Gauer S, Obermüller N, et al. Short‐term preconditioning enhances the therapeutic potential of adipose‐derived stromal/stem cell‐conditioned medium in cisplatin‐induced acute kidney injury. Exp Cell Res. 2016;342(2):175‐183.
    1. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune‐mediated diseases. Stem Cell Rev. 2015;11(2):280‐287.
    1. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1(1):2.
    1. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815‐1822.
    1. Venken K, Thewissen M, Hellings N, et al. A CFSE based assay for measuring CD4+CD25+ regulatory T cell mediated suppression of auto‐antigen specific and polyclonal T cell responses. J Immunol Methods. 2007;322(1–2):1‐11.
    1. Kinsey GR, Sharma R, Okusa MD. Regulatory T cells in AKI. J Am Soc Nephrol. 2013;24(11):1720‐1726.
    1. Bai M, Zhang L, Fu B, et al. IL‐17A improves the efficacy of mesenchymal stem cells in ischemic‐reperfusion renal injury by increasing Treg percentages by the COX‐2/PGE2 pathway. Kidney Int. 2018;93(4):814‐825.
    1. Katsuno T, Ozaki T, Saka Y, et al. Low serum cultured adipose tissue‐derived stromal cells ameliorate acute kidney injury in rats. Cell Transplant. 2013;22(2):287‐297.
    1. Liu N, Patzak A, Zhang J. CXCR77‐overexpressing bone marrow‐derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol. 2013;305(7):F1064–F1073.
    1. Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase‐associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073‐3082.
    1. Jung M, Sola A, Hughes J, et al. Infusion of IL‐10‐expressing cells protects against renal ischemia through induction of lipocalin‐2. Kidney Int. 2012;81(10):969‐982.
    1. Roudkenar MH, Halabian R, Tehrani HA, et al. Lipocalin 2 enhances mesenchymal stem cell‐based cell therapy in acute kidney injury rat model. Cytotechnology. 2018;70(1):103‐117.
    1. Tsuda H, Yamahara K, Otani K, et al. Transplantation of allogenic fetal membrane‐derived mesenchymal stem cells protects against ischemia/reperfusion‐induced acute kidney injury. Cell Transplant. 2014;23(7):889‐899.
    1. Morigi M, Benigni A. Mesenchymal stem cells and kidney repair. Nephrol Dial Transplant. 2013;28(4):788‐793.
    1. Zhang Y, Yu Z, Jiang D, et al. iPSC‐MSCs with high intrinsic MIRO1 and sensitivity to TNF‐α yield efficacious mitochondrial transfer to rescue anthracycline‐induced cardiomyopathy. Stem Cell Reports. 2016;7(4):749‐763.
    1. Zhang Y, Liang X, Liao S, et al. Potent paracrine effects of human induced pluripotent stem cell‐derived mesenchymal stem cells attenuate doxorubicin‐induced cardiomyopathy. Sci Rep. 2015;5:11235.
    1. Lian Q, Lye E, Suan YK, et al. Derivation of clinically compliant MSCs from CD105+, CD24‐ differentiated human ESCs. Stem Cells. 2007;25(2):425‐436.
    1. Lian Q, Zhang Y, Zhang J, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113‐1123.
    1. Yuan X, Li D, Chen X, et al. Extracellular vesicles from human‐induced pluripotent stem cell‐derived mesenchymal stromal cells (hiPSC‐MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis. Cell Death Dis. 2017;8(12):3200.
    1. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF‐alpha, LPS, or hypoxia produce growth factors by an NF kappa B‐ but not JNK‐dependent mechanism. Am J Physiol Cell Physiol. 2008;294(3):C675–C682.
    1. Liu Q, Zhang Z, Zheng Z, et al. Human bocavirus NS1 and NS1‐70 proteins inhibit TNF‐α‐mediated activation of NF‐κB by targeting p65. Sci Rep. 2016;6:28481.
    1. Bai X, Xi J, Bi Y, et al. TNF‐α promotes survival and migration of MSCs under oxidative stress via NF‐κB pathway to attenuate intimal hyperplasia in vein grafts. J Cell Mol Med. 2017;21(9):2077‐2091.
    1. Zhang Y, Chiu S, Liang X, et al. Rap1‐mediated nuclear factor‐kappaB (NF‐κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov. 2015;1:15007.
    1. Zhu Z, Gan X, Yu H. NF‐κB‐miR15a‐bFGF/VEGFA axis contributes to the impaired angiogenic capacity of BM‐MSCs in high fat diet‐fed mice. Mol Med Rep. 2017;16(5):7609‐7616.
    1. Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell‐derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053‐1067.
    1. Mittelbrunn M, Sánchez‐Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13(5):328‐335.
    1. Burger D, Viñas JL, Akbari S, et al. Human endothelial colony‐forming cells protect against acute kidney injury: role of exosomes. Am J Pathol. 2015;185(8):2309‐2323.
    1. Wang Y, He J, Pei X, Zhao W. Systematic review and meta‐analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology. 2013;18(3):201‐208.
    1. Zhang G, Wang D, Miao S, Zou X, Liu G, Zhu Y. Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: A meta‐analysis. Exp Ther Med. 2016;11(4):1519‐1525.
    1. Magnasco A, Corselli M, Bertelli R, et al. Mesenchymal stem cells protective effect in adriamycin model of nephropathy. Cell Transplant. 2008;17(10–11):1157‐1167.
    1. Tögel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev. 2009;18(3):475‐485.
    1. Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON‐DCM trial. J Am Coll Cardiol. 2017;69(5):526‐537.
    1. Hourd P, Ginty P, Chandra A, Williams DJ. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability. Cytotherapy. 2014;16(8):1033‐1047.
    1. Galleu A, Riffo‐Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient‐mediated immunomodulation. Sci Transl Med. 2017;9(416).
    1. Joswig AJ, Mitchell A, Cummings KJ, et al. Repeated intra‐articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther. 2017;8(1):42.
    1. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018;22(3):1428‐1442.
    1. Li X, Tamama K, Xie X, Guan J. Improving cell engraftment in cardiac stem cell therapy. Stem Cells Int. 2016;2016:7168797.
    1. Hu C, Li L. Pre‐conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med. 2017;21(9):1719‐1731.
    1. Park WS, Ahn SY, Sung SI, Ahn JY, Chang YS. Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res. 2018;83(1–2):214‐222.
    1. Das R, Jahr H, van Osch GJ, Farrell E. The role of hypoxia in bone marrow‐derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 2010;16(2):159‐168.
    1. Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res. 2012;2(3):148‐159.

Source: PubMed

3
S'abonner