Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men

Sandro Manuel Mueller, Saskia Maria Gehrig, Sebastian Frese, Carsten Alexander Wagner, Urs Boutellier, Marco Toigo, Sandro Manuel Mueller, Saskia Maria Gehrig, Sebastian Frese, Carsten Alexander Wagner, Urs Boutellier, Marco Toigo

Abstract

Background: The purpose was to investigate the effects of one dose of NaHCO3 per day for five consecutive days on cycling time-to-exhaustion (Tlim) at 'Critical Power' (CP) and acid-base parameters in endurance athletes.

Methods: Eight trained male cyclists and triathletes completed two exercise periods in a randomized, placebo-controlled, double-blind interventional crossover investigation. Before each period, CP was determined. Afterwards, participants completed five constant-load cycling trials at CP until volitional exhaustion on five consecutive days, either after a dose of NaHCO3 (0.3 g·kg-1 body mass) or placebo (0.045 g·kg-1 body mass NaCl).

Results: Average Tlim increased by 23.5% with NaHCO3 supplementation as compared to placebo (826.5 ± 180.1 vs. 669.0 ± 167.2 s; P = 0.001). However, there was no time effect for Tlim (P = 0.375). [HCO3-] showed a main effect for condition (NaHCO3: 32.5 ± 2.2 mmol·l-1; placebo: 26.2 ± 1.4 mmol·l-1; P < 0.001) but not for time (P = 0.835). NaHCO3 supplementation resulted in an expansion of plasma volume relative to placebo (P = 0.003).

Conclusions: The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.

Trial registration: Trial registration: ClinicalTrials.gov Identifier NCT01621074.

Figures

Figure 1
Figure 1
Study design. C, constant-load trials at ‘Critical Power’ (CP); E, constant load tests; R, incremental ramp test.
Figure 2
Figure 2
Time-to-exhaustion with NaHCO₃ and placebo supplementation. a) Mean ± SD time-to-exhaustion (Tlim) with NaHCO3 and placebo, respectively, **P < 0.01; b)Tlim with NaHCO3 (solid line) and placebo (dashed line) on the 5 days of testing are presented as group mean ± SD (n = 8).

References

    1. Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for the determination of V O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42:1876–1890. doi: 10.1249/MSS.0b013e3181d9cf7f.
    1. Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8:329–338. doi: 10.1080/00140136508930810.
    1. Brickley G, Doust J, Williams CA. Physiological responses during exercise at critical power. Eur J Appl Physiol. 2002;88:146–151. doi: 10.1007/s00421-002-0706-1.
    1. Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol. 1990;61:278–283. doi: 10.1007/BF00357613.
    1. Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88:214–226. doi: 10.1007/s00421-002-0703-4.
    1. Jones NL, Sutton JR, Taylor R, Toews CJ. Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol. 1977;43:959–964.
    1. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294:R585–R593.
    1. Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab. 2000;278:E316–E329.
    1. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol. 1978;276:233–255.
    1. Donaldson SK, Hermansen L, Bolles L. Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch. 1978;376:55–65. doi: 10.1007/BF00585248.
    1. Lannergren J, Westerblad H. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. J Physiol. 1991;1991(434):307–322.
    1. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74:49–94. doi: 10.2466/pr0.1994.74.1.49.
    1. Forbes SC, Raymer GH, Kowalchuk JM, Marsh GD. NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise. J Appl Physiol. 2005;99:1668–1675. doi: 10.1152/japplphysiol.01200.2004.
    1. Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36:807–813.
    1. Mainwood GW, Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol. 1975;250:1–22.
    1. McNaughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness. 2001;41:456–462.
    1. Siegler JC, Midgley AW, Polman RC, Lever R. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res. 2010;24:2551–2557. doi: 10.1519/JSC.0b013e3181aeb154.
    1. Wu CL, Shih MC, Yang CC, Huang MH, Chang CK. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J Int Soc Sports Nutr. 2010;7:33. doi: 10.1186/1550-2783-7-33.
    1. Price MJ, Cripps D. The effects of combined glucose-electrolyte and sodium bicarbonate ingestion on prolonged intermittent exercise performance. J Sports Sci. 2012;30:975–983. doi: 10.1080/02640414.2012.685086.
    1. Heer M, Frings-Meuthen P, Titze J, Boschmann M, Frisch S, Baecker N, Beck L. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid–base balance differently. Brit J Nutr. 2009;101:1286–1294. doi: 10.1017/S0007114508088041.
    1. McNaughton L. Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. J Sports Sci. 1992;10:415–423. doi: 10.1080/02640419208729940.
    1. Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34:614–621. doi: 10.1097/00005768-200204000-00009.
    1. Vanhatalo A, McNaughton LR, Siegler JH, Jones AM. Effect of induced alkalosis on the power-duration relationship for “all-out” exercise. Med Sci Sports Exerc. 2010;42:563–570.
    1. Hill DW. The critical power concept. A review. Sports Med. 1993;16:237–254. doi: 10.2165/00007256-199316040-00003.
    1. Brickley G, Green S, Jenkins DG, McEinery M, Wishart C, Doust JD, Williams CA. Muscle metabolism during constant- and alternating-intensity exercise around critical power. Int J Sports Med. 2007;28:300–305. doi: 10.1055/s-2006-924354.
    1. Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37:247–248.
    1. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol. 1996;271(6 Pt 1):E941–E951.
    1. Olsson KE, Saltin B. Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand. 1970;80:11–18. doi: 10.1111/j.1748-1716.1970.tb04764.x.
    1. McNaughton L, Backx K, Palmer G, Strange N. Effects of chronic bicarbonate ingestion on the performance of high-intensity work. Eur J Appl Physiol. 1999;80:333–336. doi: 10.1007/s004210050600.
    1. Berger NJA, McNaughton LR, Keatley S, Wilkerson DP, Jones AM. Sodium bicarbonate ingestion alters the slow but not the fast phase of V̇ O2 kinetics. Med Sci Sports Exerc. 2006;38:1909–1917. doi: 10.1249/01.mss.0000233791.85916.33.
    1. Santalla A, Pérez M, Montilla M, Vicente L, Davison R, Earnest C, Lucia A. Sodium bicarbonate ingestion does not alter the slow component of oxygen uptake kinetics in professional cyclists. J Sports Sci. 2003;21:39–47. doi: 10.1080/0264041031000070949.
    1. Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sports Sci. 2007;7:63–79. doi: 10.1080/17461390701456148.
    1. McNaughton L, Dalton B, Palmer G. Sodium bicarbonate can be used as an ergogenic aid in high-intensity, competitive cycle ergometry of 1 h duration. Eur J Appl Physiol. 1999;80:64–69. doi: 10.1007/s004210050559.
    1. Montain SJ, Cheuvront SN, Sawka MN. Exercise associated hyponatremia: quantitative analysis to understand the aetiology. Br J Sports Med. 2006;40:98–106. doi: 10.1136/bjsm.2005.018481.
    1. Máttar JA, Weil MH, Shubin H, Stein L. Cardiac arrest in the critically ill: II. Hyperosmolal states following cardiac arrest. Am J Med. 1974;56:162–168. doi: 10.1016/0002-9343(74)90593-2.
    1. He FJ, Markandu ND, Sagnella GA, DeWardener HE, MacGregor GA. Plasma sodium: ignored and underestimated. Hypertension. 2005;45:98–102.
    1. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kidney Int. 1976;10:25–37. doi: 10.1038/ki.1976.76.
    1. Roos JC, Koomans HA, Dorhout Mees EJ, Delawi IM. Renal sodium handling in normal humans subjected to low, normal and extremely high sodium supplies. Am J Physiol. 1985;249(6 Pt 2):F941–F947.
    1. Lands LC, Hornby L, Hohenkerk JM, Glorieux FH. Accuracy of measurements of small changes in soft-tissue mass by use of dual-energy X-ray absorptiometry. Clin Invest Med. 1996;19:279–285.
    1. Kanstrup IL, Ekblom B. Acute hypervolemia, cardiac performance, and aerobic power during exercise. J Appl Physio. 1982;52:1186–1191.
    1. Miura A, Sato H, Sato H, Whipp BJ, Fukuba Y. The effect of glycogen depetion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics. 2000;43:133–141. doi: 10.1080/001401300184693.
    1. Douroudos II, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A, Margonis K, Mavromatidis K, Taxildaris K. Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc. 2006;38:1746–1753. doi: 10.1249/01.mss.0000230210.60957.67.

Source: PubMed

3
S'abonner