Efficacy of Docosahexaenoic Acid for the Prevention of Necrotizing Enterocolitis in Preterm Infants: A Randomized Clinical Trial

Mariela Bernabe-García, Philip C Calder, Raúl Villegas-Silva, Maricela Rodríguez-Cruz, Luis Chávez-Sánchez, Leonardo Cruz-Reynoso, Leovigildo Mateos-Sánchez, Gabriel Lara-Flores, Augusto R Aguilera-Joaquín, Luisa Sánchez-García, Mariela Bernabe-García, Philip C Calder, Raúl Villegas-Silva, Maricela Rodríguez-Cruz, Luis Chávez-Sánchez, Leonardo Cruz-Reynoso, Leovigildo Mateos-Sánchez, Gabriel Lara-Flores, Augusto R Aguilera-Joaquín, Luisa Sánchez-García

Abstract

Necrotizing enterocolitis (NEC) is an inflammatory bowel disease and a leading cause of morbidity and mortality in preterm infants. In this study, a randomized double-blind parallel-group (1:1) trial was carried out in two neonatal intensive care units of two tertiary hospitals. Two hundred and twenty-five preterm newborns with an expected functional gastrointestinal tract were recruited and received an enteral dose of 75 mg of docosahexaenoic acid (DHA)/kg body weight or high-oleic sunflower oil daily for 14 days from the first enteral feed after birth. Confirmed NEC was evaluated with Bell's scale from stage ≥ IIa. Two hundred and fourteen randomized infants were analyzed in terms of the intent-to-treat (DHA-group: n = 105; control-group: n = 109); data for two hundred infants were analysed per protocol. Confirmed NEC was lower in infants from the DHA-group compared with the control-group (0/100 vs. 7/100; p = 0.007), with RR = 0.93 (95% CI 0.881 to 0.981), risk difference = -7%, (95% CI -12.00 to -1.99), and number needed-to-treat = 15 (95% CI 8.3 to 50). Intent-to-treat analysis showed a lower level of treatment failure in the DHA-group compared with the control-group (6/105 (6%) vs. 16/109 (15%); p = 0.03, RR = 0.905, (95% CI 0.826 to 0.991)). The results after multivariate-regression analysis remained significant. Adverse events (apart from the incidence of NEC) were not different between groups. A daily dose of DHA for 14 days starting with the first enteral feed may prevent NEC in preterm infants.

Keywords: DHA; hospital stay; infant; inflammation; n-3 fatty acids; necrotizing enterocolitis; neonatal intensive care unit; omega-3; prematurity; very low birth weight.

Conflict of interest statement

P.C.C. acts as a consultant to BASF AS, Smartfish, DSM, Cargill, Danone/Nutricia, and Fresenius-Kabi. All other authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
CONSORT diagram depicting the flow of the infants through the study. DHA, docosahexaenoic acid; NEC, necrotizing enterocolitis; and ITT, intent-to-treat.
Figure 2
Figure 2
Decision tree obtained from Chi-square automatic interaction detection multiple regression analysis for the prediction of confirmed necrotizing enterocolitis (NEC). The order of the variables, from top to bottom, shows their ranking for the prediction of confirmed NEC; the first was the intervention, the second was gestational age, and the last was presenting apnea.
Figure 3
Figure 3
The decision tree obtained from the Chi-square automatic interaction detection multiple regression analysis showed that no infants in the control group who received any volume of human milk developed necrotizing enterocolitis (NEC).

References

    1. Gupta A., Paria A. Etiology and medical management of NEC. Early Hum. Dev. 2016;97:17–23. doi: 10.1016/j.earlhumdev.2016.03.008.
    1. Neu J., Walker W.A. Necrotizing enterocolitis. N. Engl. J. Med. 2011;364:255–264. doi: 10.1056/NEJMra1005408.
    1. Jones I.H., Hall N.J. Contemporary outcomes for infants with necrotizing enterocolitis-a systematic review. J. Pediatr. 2020;220:86–92.e83. doi: 10.1016/j.jpeds.2019.11.011.
    1. Bazacliu C., Neu J. Necrotizing enterocolitis: Long term complications. Curr. Pediatr. Rev. 2019;15:115–124. doi: 10.2174/1573396315666190312093119.
    1. Denning T.L., Bhatia A.M., Kane A.F., Patel R.M., Denning P.W. Pathogenesis of NEC: Role of the innate and adaptive immune response. Semin. Perinatol. 2017;41:15–28. doi: 10.1053/j.semperi.2016.09.014.
    1. Neu J., Pammi M. Pathogenesis of NEC: Impact of an altered intestinal microbiome. Semin. Perinatol. 2017;41:29–35. doi: 10.1053/j.semperi.2016.09.015.
    1. Smith S.L., Rouse C.A. Docosahexaenoic acid and the preterm infant. Matern. Health Neonatol. Perinatol. 2017;3:22. doi: 10.1186/s40748-017-0061-1.
    1. Martin C.R., Dasilva D.A., Cluette-Brown J.E., Dimonda C., Hamill A., Bhutta A.Q., Coronel E., Wilschanski M., Stephens A.J., Driscoll D.F., et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011;159:743–749.e1–2. doi: 10.1016/j.jpeds.2011.04.039.
    1. Brenna J.T., Varamini B., Jensen R.G., Diersen-Schade D.A., Boettcher J.A., Arterburn L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007;85:1457–1464. doi: 10.1093/ajcn/85.6.1457.
    1. Moltó-Puigmartí C., Castellote A.I., Carbonell-Estrany X., López-Sabater M.C. Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin. Nutr. 2011;30:116–123. doi: 10.1016/j.clnu.2010.07.013.
    1. Koletzko B., Bergmann K., Brenna J.T., Calder P.C., Campoy C., Clandinin M.T., Colombo J., Daly M., Decsi T., Demmelmair H., et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020;111:10–16. doi: 10.1093/ajcn/nqz252.
    1. Frost B.L., Caplan M.S. Can fish oil reduce the incidence of necrotizing enterocolitis by altering the inflammatory response? Clin. Perinatol. 2019;46:65–75. doi: 10.1016/j.clp.2018.09.004.
    1. World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Regulation of the General Law of Health in maters of Research for Health [REGLAMENTO de la Ley General de Salud en Materia de Investigación para la Salud. Diario Oficial de la Federación]. Published 7 February 1984. [(accessed on 13 January 2021)]; Available online: .
    1. Saghaei M. Random allocation software for parallel group randomized trials. BMC Med. Res. Methodol. 2004;4:26. doi: 10.1186/1471-2288-4-26.
    1. Bernabe-Garcia M., Villegas-Silva R., Villavicencio-Torres A., Calder P.C., Rodriguez-Cruz M., Maldonado-Hernandez J., Macias-Loaiza D., Lopez-Alarcon M., Inda-Icaza P., Cruz-Reynoso L. Enteral docosahexaenoic acid and retinopathy of prematurity: A randomized clinical trial. J. Parent. Enter. Nutr. 2019;43:874–882. doi: 10.1002/jpen.1497.
    1. Bernabe-Garcia M., Lopez-Alarcon M., Villegas-Silva R., Mancilla-Ramirez J., Rodriguez-Cruz M., Maldonado-Hernandez J., Chavez-Rueda K.A., Blanco-Favela F., Espinoza-Garcia L., Lagunes-Salazar S. Beneficial effects of enteral docosahexaenoic acid on the markers of inflammation and clinical outcomes of neonates undergoing cardiovascular surgery: An intervention study. Ann. Nutr. Metab. 2016;69:15–23. doi: 10.1159/000447498.
    1. Walsh M.C., Kliegman R.M. Necrotizing enterocolitis: Treatment based on staging criteria. Pediatr. Clin. N. Am. 1986;33:179–201. doi: 10.1016/S0031-3955(16)34975-6.
    1. The International Neonatal Network The CRIB (clinical risk index for babies) score: A tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The International Neonatal Network. Lancet. 1993;342:193–198. doi: 10.1016/0140-6736(93)92296-6.
    1. Evershed R. Gas chromatography of lipids. In: Hamilton S., Hamilton R.J., editors. Lipid Analysis. A Practical Approach. Oxford University Press; Oxford, UK: 1992. pp. 113–151.
    1. Lu J., Jilling T., Li D., Caplan M.S. Polyunsaturated fatty acid supplementation alters proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Pediatr. Res. 2007;61:427–432. doi: 10.1203/pdr.0b013e3180332ca5.
    1. Ohtsuka Y., Okada K., Yamakawa Y., Ikuse T., Baba Y., Inage E., Fujii T., Izumi H., Oshida K., Nagata S., et al. Omega-3 fatty acids attenuate mucosal inflammation in premature rat pups. J. Pediatr. Surg. 2011;46:489–495. doi: 10.1016/j.jpedsurg.2010.07.032.
    1. Wijendran V., Brenna J.T., Wang D.H., Zhu W., Meng D., Ganguli K., Kothapalli K.S., Requena P., Innis S., Walker W.A. Long-chain polyunsaturated fatty acids attenuate the IL-1beta-induced proinflammatory response in human fetal intestinal epithelial cells. Pediatr. Res. 2015;78:626–633. doi: 10.1038/pr.2015.154.
    1. Carlson S.E., Montalto M.B., Ponder D.L., Werkman S.H., Korones S.B. Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr. Res. 1998;44:491–498. doi: 10.1203/00006450-199810000-00005.
    1. Innis S.M., Adamkin D.H., Hall R.T., Kalhan S.C., Lair C., Lim M., Stevens D.C., Twist P.F., Diersen-Schade D.A., Harris C.L., et al. Docosahexaenoic acid and arachidonic acid enhance growth with no adverse effects in preterm infants fed formula. J. Pediatr. 2002;140:547–554. doi: 10.1067/mpd.2002.123282.
    1. Smithers L.G., Gibson R.A., McPhee A., Makrides M. Effect of long-chain polyunsaturated fatty acid supplementation of preterm infants on disease risk and neurodevelopment: A systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2008;87:912–920. doi: 10.1093/ajcn/87.4.912.
    1. Henriksen C., Haugholt K., Lindgren M., Aurvag A.K., Ronnestad A., Gronn M., Solberg R., Moen A., Nakstad B., Berge R.K., et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics. 2008;121:1137–1145. doi: 10.1542/peds.2007-1511.
    1. Collins C.T., Makrides M., McPhee A.J., Sullivan T.R., Davis P.G., Thio M., Simmer K., Rajadurai V.S., Travadi J., Berry M.J., et al. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants. N. Engl. J. Med. 2017;376:1245–1255. doi: 10.1056/NEJMoa1611942.
    1. Parra-Cabrera S., Moreno-Macias H., Mendez-Ramirez I., Schnaas L., Romieu I. Maternal dietary omega fatty acid intake and auditory brainstem-evoked potentials in Mexican infants born at term: Cluster analysis. Early Hum. Dev. 2008;84:51–57. doi: 10.1016/j.earlhumdev.2007.03.005.
    1. Farahnak Z., Yuan Y., Vanstone C.A., Weiler H.A. Maternal and neonatal red blood cell n-3 polyunsaturated fatty acids inversely associate with infant whole-body fat mass assessed by dual-energy X-ray absorptiometry. Appl. Physiol. Nutr. Metab. 2020;45:318–326. doi: 10.1139/apnm-2019-0311.
    1. Hackam D.J., Afrazi A., Good M., Sodhi C.P. Innate immune signaling in the pathogenesis of necrotizing enterocolitis. Clin. Dev. Immunol. 2013;2013:475415. doi: 10.1155/2013/475415.
    1. Bruewer M., Luegering A., Kucharzik T., Parkos C.A., Madara J.L., Hopkins A.M., Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 2003;171:6164–6172. doi: 10.4049/jimmunol.171.11.6164.
    1. Halpern M.D., Clark J.A., Saunders T.A., Doelle S.M., Hosseini D.M., Stagner A.M., Dvorak B. Reduction of experimental necrotizing enterocolitis with anti-TNF-alpha. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G757–G764. doi: 10.1152/ajpgi.00408.2005.
    1. Chheda S., Palkowetz K.H., Garofalo R., Rassin D.K., Goldman A.S. Decreased interleukin-10 production by neonatal monocytes and T cells: Relationship to decreased production and expression of tumor necrosis factor-alpha and its receptors. Pediatr. Res. 1996;40:475–483. doi: 10.1203/00006450-199609000-00018.
    1. Calder P.C. n-3 PUFA and inflammation: From membrane to nucleus and from bench to bedside. Proc. Nutr. Soc. 2020;79:404–416. doi: 10.1017/S0029665120007077.
    1. Llanos A.R., Moss M.E., Pinzon M.C., Dye T., Sinkin R.A., Kendig J.W. Epidemiology of neonatal necrotising enterocolitis: A population-based study. Paediatr. Perinat. Epidemiol. 2002;16:342–349. doi: 10.1046/j.1365-3016.2002.00445.x.
    1. Patel A.L., Kim J.H. Human milk and necrotizing enterocolitis. Semin. Pediatr. Surg. 2018;27:34–38. doi: 10.1053/j.sempedsurg.2017.11.007.
    1. Miller J., Tonkin E., Damarell R.A., McPhee A.J., Suganuma M., Suganuma H., Middleton P.F., Makrides M., Collins C.T. A systematic review and meta-analysis of human milk feeding and morbidity in very low birth weight infants. Nutrients. 2018;10:707. doi: 10.3390/nu10060707.
    1. Xiong T., Maheshwari A., Neu J., Ei-Saie A., Pammi M. An Overview of systematic reviews of randomized-controlled trials for preventing necrotizing enterocolitis in preterm infants. Neonatology. 2020;117:46–56. doi: 10.1159/000504371.
    1. Spinner J.A., Morris S.A., Nandi D., Costarino A.T., Marino B.S., Rossano J.W., Shamszad P. Necrotizing enterocolitis and associated mortality in neonates with congenital heart disease: A multi-institutional study. Pediatr. Crit. Care Med. 2020;21:228–234. doi: 10.1097/PCC.0000000000002133.
    1. Patel R.M., Knezevic A., Shenvi N., Hinkes M., Keene S., Roback J.D., Easley K.A., Josephson C.D. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA. 2016;315:889–897. doi: 10.1001/jama.2016.1204.
    1. Marion-Letellier R., Butler M., Dechelotte P., Playford R.J., Ghosh S. Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor gamma ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells--potential for dietary modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation. Am. J. Clin. Nutr. 2008;87:939–948. doi: 10.1093/ajcn/87.4.939.
    1. Baker E.J., Valenzuela C.A., De Souza C.O., Yaqoob P., Miles E.A., Calder P.C. Comparative anti-inflammatory effects of plant- and marine-derived omega-3 fatty acids explored in an endothelial cell line. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158662. doi: 10.1016/j.bbalip.2020.158662.

Source: PubMed

3
S'abonner