Bedside myocardial perfusion assessment with contrast echocardiography

Sam Orde, Anthony McLean, Sam Orde, Anthony McLean

Abstract

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.

Figures

Fig. 1
Fig. 1
Normal myocardial contrast perfusion echocardiograph: qualitative assessment. Ultrasound contrast infused until steady state achieved (SS – steady state). A ‘flash’ of high mechanical index ultrasound destroys the contrast microbubbles within the imaging beam. Assessment of myocardial perfusion is then made as the microbubbles return to the myocardium over subsequent cardiac cycles (1–6). Normal replenishment occurs over 5–6 cardiac cycles at rest, 2–3 cardiac cycles with stress
Fig. 2
Fig. 2
Qualitative assessment of myocardial perfusion involves specification of a region of interest (ROI) classically corresponding to individual left ventricular myocardial segments
Fig. 3
Fig. 3
Myocardial contrast perfusion echocardiography (MCPE) quantitative assessment. Regions of interest (ROI) are defined and rate of change in signal intensity assessed at end‐diastolic frames. The plateau signal intensity (A) is considered to represent the myocardial capillary blood volume. The rate of replenishment (β) of the microbubbles is considered as the velocity of blood. The product of A  ×  β is considered to represent the myocardial blood flow
Fig. 4
Fig. 4
Takotsubo’s cardiomyopathy with microvascular dysfunction (arrows). Endocardial perfusion defect shown at 5 beats post flash in the apical region where transient apical hypokinesis was visualized. Coronary angiography confirmed normal vasculature and left ventriculography demonstrated apical ballooning

References

    1. Kurt M, Shaikh KA, Peterson L, et al. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. J Am Coll Cardiol. 2009;53:802–810. doi: 10.1016/j.jacc.2009.01.005.
    1. Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: contrast studies in anatomy and function. Radiology. 1969;92:939–948. doi: 10.1148/92.5.939.
    1. Keller MW, Feinstein SB, Watson DD. Successful left ventricular opacification following peripheral venous injection of sonicated contrast agent: an experimental evaluation. Am Heart J. 1987;114:570–575. doi: 10.1016/0002-8703(87)90754-X.
    1. Feinstein SB, Cheirif J, Ten Cate FJ, et al. Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol. 1990;16:316–324. doi: 10.1016/0735-1097(90)90580-I.
    1. Lindner JR, Dent JM, Moos SP, et al. Enhancement of left ventricular cavity opacification by harmonic imaging after venous injection of Albunex. Am J Cardiol. 1997;79:1657–1662. doi: 10.1016/S0002-9149(97)00217-8.
    1. Postema M, van Wamel A, Ten Cate FJ, de Jong N. High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys. 2005;32:3707–3711. doi: 10.1118/1.2133718.
    1. Keller MW, Segal SS, Kaul S, Duling B. The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. Circ Res. 1989;65:458–467. doi: 10.1161/01.RES.65.2.458.
    1. Platts DG, Fraser JF. Contrast echocardiography in critical care: echoes of the future? A review of the role of microsphere contrast echocardiography. Crit Care Resusc. 2011;13:44–55.
    1. Seol S-H, Lindner JR. A primer on the methods and applications for contrast echocardiography in clinical imaging. J Cardiovasc Ultrasound. 2014;22:101–110. doi: 10.4250/jcu.2014.22.3.101.
    1. Pathan F, Marwick TH. Myocardial perfusion imaging using contrast echocardiography. Prog Cardiovasc Dis. 2015;57:632–643. doi: 10.1016/j.pcad.2015.03.005.
    1. Seol S-H, Davidson BP, Belcik JT, et al. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles. J Am Soc Echocardiogr. 2015;28:718–726.e2. doi: 10.1016/j.echo.2015.02.002.
    1. Jayaweera AR, Edwards N, Glasheen WP, et al. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res. 1994;74:1157–1165. doi: 10.1161/01.RES.74.6.1157.
    1. Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–483. doi: 10.1161/01.CIR.97.5.473.
    1. Vogel R, Indermühle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45:754–762. doi: 10.1016/j.jacc.2004.11.044.
    1. Main ML, Hibberd MG, Ryan A, et al. Acute mortality in critically ill patients undergoing echocardiography with or without an ultrasound contrast agent. JACC Cardiovasc Imaging. 2014;7:40–48. doi: 10.1016/j.jcmg.2013.08.012.
    1. Abdelmoneim SS, Bernier M, Scott CG, et al. Safety of contrast agent use during stress echocardiography in patients with elevated right ventricular systolic pressure: a cohort study. Circ Cardiovasc Imaging. 2010;3:240–248. doi: 10.1161/CIRCIMAGING.109.895029.
    1. Wei K, Mulvagh SL, Carson L, et al. The safety of deFinity and Optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J Am Soc Echocardiogr. 2008;21:1202–1206. doi: 10.1016/j.echo.2008.07.019.
    1. Putrino A, Platts DG. Contrast echocardiography in acutely unwell patients. J Am Soc Echocardiogr. 2015;28:844. doi: 10.1016/j.echo.2015.03.009.
    1. U.S. Food and Drug Administration. Postmarket Drug Safety Information for Patients and Providers. Information for Healthcare Professionals: Micro-bubble Contrast Agents (marketed as Definity (Perflutren Lipid Microsphere) Injectable Suspension and Optison (Perflutren Protein-Type A Microspheres for Injection). 2008. Update FDA alert. . Accessed Oct 2015.
    1. Mulvagh SL, Rakowski H, Vannan MA, et al. American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21:1179–1201. doi: 10.1016/j.echo.2008.09.009.
    1. Parker JM, Weller MW, Feinstein LM, et al. Safety of ultrasound contrast agents in patients with known or suspected cardiac shunts. Am J Cardiol. 2013;112:1039–1045. doi: 10.1016/j.amjcard.2013.05.042.
    1. Lim W, Whitlock R, Khera V, et al. Etiology of troponin elevation in critically ill patients. J Crit Care. 2010;25:322–328. doi: 10.1016/j.jcrc.2009.07.002.
    1. Orde SR, Pulido JN, Masaki M, et al. Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care. 2014;18:R149. doi: 10.1186/cc13987.
    1. Orde SR, Huang SJ, McLean AS. 2015 ASE 26th Annual Scientific Sessions. Raised Troponin in the ICU: can real-time myocardial contrast echocardiography improve recognition of acute ischaemia in the critically ill? JASE. 2015;28:B2–B134.
    1. Senior R, Becher H, Monaghan M, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10:194–212. doi: 10.1093/ejechocard/jep005.
    1. Dijkmans PA, Senior R, Becher H, et al. Myocardial contrast echocardiography evolving as a clinically feasible technique for accurate, rapid, and safe assessment of myocardial perfusion: the evidence so far. J Am Coll Cardiol. 2006;48:2168–2177. doi: 10.1016/j.jacc.2006.05.079.
    1. Senior R, Janardhanan R, Jeetley P, Burden L. Myocardial contrast echocardiography for distinguishing ischemic from nonischemic first-onset acute heart failure: insights into the mechanism of acute heart failure. Circulation. 2005;112:1587–1593. doi: 10.1161/CIRCULATIONAHA.104.530089.
    1. Abdelmoneim SS, Mankad SV, Bernier M, et al. Microvascular function in Takotsubo cardiomyopathy with contrast echocardiography: prospective evaluation and review of literature. J Am Soc Echocardiogr. 2009;22:1249–1255. doi: 10.1016/j.echo.2009.07.012.
    1. Ait-Oufella H, Bourcier S, Lehoux S, Guidet B. Microcirculatory disorders during septic shock. Curr Opin Crit Care. 2015;21:271–275. doi: 10.1097/MCC.0000000000000217.
    1. Linka AZ, Sklenar J, Wei K, et al. Assessment of transmural distribution of myocardial perfusion with contrast echocardiography. Circulation. 1998;98:1912–1920. doi: 10.1161/01.CIR.98.18.1912.
    1. Schneider AG, Goodwin MD, Schelleman A, et al. Contrast-enhanced ultrasound to evaluate changes in renal cortical perfusion around cardiac surgery: a pilot study. Crit Care. 2013;17:R138. doi: 10.1186/cc12817.
    1. Schneider AG, Goodwin MD, Schelleman A, et al. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18:653. doi: 10.1186/s13054-014-0653-3.
    1. Bhattacharyya S, Senior R. The current state of myocardial contrast echocardiography: what can we read between the lines? Reply. Eur Heart J Cardiovasc Imaging. 2014;15:351–352. doi: 10.1093/ehjci/jet249.

Source: PubMed

3
S'abonner