Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation

Clément François, Jennifer Grau-Sánchez, Esther Duarte, Antoni Rodriguez-Fornells, Clément François, Jennifer Grau-Sánchez, Esther Duarte, Antoni Rodriguez-Fornells

Abstract

In the last decade, important advances in the field of cognitive science, psychology, and neuroscience have largely contributed to improve our knowledge on brain functioning. More recently, a line of research has been developed that aims at using musical training and practice as alternative tools for boosting specific perceptual, motor, cognitive, and emotional skills both in healthy population and in neurologic patients. These findings are of great hope for a better treatment of language-based learning disorders or motor impairment in chronic non-communicative diseases. In the first part of this review, we highlight several studies showing that learning to play a musical instrument can induce substantial neuroplastic changes in cortical and subcortical regions of motor, auditory and speech processing networks in healthy population. In a second part, we provide an overview of the evidence showing that musical training can be an alternative, low-cost and effective method for the treatment of language-based learning impaired populations. We then report results of the few studies showing that training with musical instruments can have positive effects on motor, emotional, and cognitive deficits observed in patients with non-communicable diseases such as stroke or Parkinson Disease. Despite inherent differences between musical training in educational and rehabilitation contexts, these results favor the idea that the structural, multimodal, and emotional properties of musical training can play an important role in developing new, creative and cost-effective intervention programs for education and rehabilitation in the next future.

Keywords: language development disorders; music therapy; music training; neuro-education; neuro-rehabilitation; stroke rehabilitation.

Figures

FIGURE 1
FIGURE 1
Illustration of the experimental design used in Chobert et al. (2014) and François et al. (2013). Using a similar design over 2 school years with test-training-retest-training-retest procedure over 2 years, 8-year-old children who followed a musical training program exhibited behavioral and electrophysiological evidence of increasing VOT processing and speech segmentation skills than children who followed a painting training program. Note that, (i) the pseudo-random assignment of the participants is crucial to control for possible confounds including, socio-economic, educational, cognitive, and linguistic measures; (ii) that the two training programs must be equally motivating, engaging, diverse; and that (iii) the training programs were provided in collective groups and not in individual.

References

    1. Aarsland D., Påhlhagen S., Ballard C. G., Ehrt U., Svenningsson P. (2012). Depression in Parkinson disease-epidemiology, mechanisms and management. Nat. Rev. Neurol. 8, 35–47. 10.1038/nrneurol.2011.189
    1. Albert S. J., Kesselring J. (2012). Neurorehabilitation of stroke. J. Neurol. 259, 817–832. 10.1007/s00415-011-6247-y
    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Annu. N. Y. Acad. Sci. 1169, 395–405. 10.1111/j.1749-6632.2009.04580.x
    1. Amengual J. L., Rojo N., Veciana de las Heras M., Marco-Pallarés J., Grau-Sánchez J., Schneider S., et al. (2013). Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation. PLoS ONE 8:e61883. 10.1371/journal.pone.0061883
    1. Amunts K., Schlaug G., Jäncke L., Steinmetz H., Schleicher A., Dabringhaus A., et al. (1997). Motor cortex and hand motor skills: structural compliance in the human brain. Hum. Brain Mapp. 5, 206–215. 10.1002/(SICI)1097-0193(1997)5:3<206::AID-HBM5>;2-7
    1. Anderson S., Skoe E., Chandrasekaran B., Kraus N. (2010). Neural timing is linked to speech perception in noise. J. Neurosci. 30, 4922–4926. 10.1523/JNEUROSCI.0107-10.2010
    1. Anvari S., Trainor L., Woodside J., Levy B. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. J. Exp. Child Psychol. 83, 111–130. 10.1016/S0022-0965(02)00124-8
    1. Arias P., Cudeiro J. (2008). Effects of rhythmic sensory stimulation (auditory visual) on gait in Parkinson’s disease patients. Exp. Brain Res. 186, 589–601. 10.1007/s00221-007-1263-y
    1. Arias P., Cudeiro J. (2010). Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS ONE 5:e9675. 10.1371/journal.pone.0009675
    1. Aslin R. N., Saffran J. R., Newport E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 9, 321–324 10.1111/1467-9280.00063
    1. Ayerbe L., Ayis S., Wolfe C. D., Rudd A. G. (2013). Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. Br. J. Psychiatry 202, 14–21. 10.1192/bjp.bp.111.107664
    1. Bailey J. A., Zatorre R. J., Penhune V. B. (2014). Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. J. Cogn. Neurosci. 26, 755–767. 10.1162/jocn_a_00527
    1. Bangert M., Altnemüller E. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4:26. 10.1186/1471-2202-4-26
    1. Bangert M., Schlaug G. (2006). Specialization of the specialized in features of external human brain morphology. Eur. J. Neurosci. 24, 1832–1834. 10.1111/j.1460-9568.2006.05031.x
    1. Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., Jancke L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 1161, 65–78. 10.1016/j.brainres.2007.05.045
    1. Bengtsson S. L., Nagy Z., Skare S., Forsman L., Forssberg H., Ullén F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150. 10.1038/nn1516
    1. Bengtsson S. L., Ullén F., Ehrsson H. H., Hashimoto T., Kito T., Naito E., et al. (2009). Listening to rhythms activates motor and premotor cortices. Cortex 45, 62–71. 10.1016/j.cortex.2008.07.002
    1. Bermudez P., Zatorre R. J. (2005). Differences in gray matter between musicians and nonmusicians. Ann. N. Y. Acad. Sci. 1060, 395–399. 10.1196/annals.1360.057
    1. Besson M., Chobert J., Marie C. (2011). Transfer of training between music and speech: common processing, attention, and memory. Front. Psychol. 2:94. 10.3389/fpsyg.2011.00094
    1. Bidelman G. M., Krishnan A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Res. 1355, 112–125. 10.1016/j.brainres.2010.07.100
    1. Birkenmeier R. L., Prager E. M., Lang C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil. Neural Repair 24, 620–635. 10.1177/1545968310361957
    1. Bishop-Liebler P., Welch G., Huss M., Thomson J. M., Goswami U. (2014). Auditory temporal processing skills in musicians with dyslexia. Dyslexia 20, 261–279. 10.1002/dys.1479
    1. Burkard R. F., Sims D. (2002). A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults. Am. J. Audiol. 11, 13–22. 10.1044/1059-0889(2002/004)
    1. Brattico E., Pallesen K. J., Varyagina O., Bailey C., Anourova I., Järvenpää , et al. (2009). Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study. J. Cogn. Neurosci. 21, 2230–2244. 10.1162/jocn.2008.21144
    1. Caeiro L., Ferro J. M., Costa J. (2013). Apathy secondary to stroke: a systematic review and meta-analysis. Cerebrovasc. Dis. 35, 23–39. 10.1159/000346076
    1. Caine R., Caine G. (1990). Understanding a brain-based approach to learning and teaching. Educ. Leadersh. 48, 66–70.
    1. Campbell Burton C. A., Holmes J., Murray J., Gillespie D., Lightbody C. E., Watkins C. L., et al. (2011). Interventions for treating anxiety after stroke. Cochrane Database Syst. Rev 12:CD008860. 10.1002/14651858.CD008860.pub2
    1. Carroll D. (1965). A quantitative test of upper extremity function. J. Chronic Dis. 18, 479–491 10.1016/0021-9681(65)90030-5
    1. Cason N., Hidalgo C., Isoard F., Roman S., Schön D. (2015). Rhythmic priming enhances speech production abilities: evidence from prelingually deaf children. Neuropsychology 29, 102–107. 10.1037/neu0000115
    1. Cason N., Schön D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia 50, 2652–2658. 10.1016/j.neuropsychologia.2012.07.018
    1. Chen J. L., Rae C., Watkins K. E. (2012). Learning to play a melody: an fmri study examining the formation of auditory-motor associations. Neuroimage 59, 1200–1208. 10.1016/j.neuroimage.2011.08.012
    1. Chobert J., François C., Habib M., Besson M. (2012). Deficit in the preattentive processing of syllabic duration and VOT in children with dyslexia. Neuropsychologia 50, 2044–2055. 10.1016/j.neuropsychologia.2012.05.004
    1. Chobert J., François C., Velay J. L., Besson M. (2014). Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb. Cortex 24, 956–967. 10.1093/cercor/bhs377
    1. Chobert J., Marie C., François C., Schön D., Besson M. (2011). Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 23, 3874–3887. 10.1162/jocn_a_00088
    1. Collective expertise INSERM. C. N. D. R. S. D. I. (2007). Dyslexie, dysorthographie, dyscalculie: Bilan des données scientifiques. Paris: INSERM.
    1. Cogo-Moreira H., Andriolo R. B., Yazigi L., Ploubidis G. B., Brandão de Ávila C. R., Mari J. J. (2012). Music education for improving reading skills in children and adolescents with dyslexia. Cochrane Database. Syst. Rev 8:CD009133. 10.1002/14651858.CD009133.pub2
    1. Cogo-Moreira H., Brandão de Ávila C. R., Ploubidis G. B., Mari J. J. (2013). Effectiveness of music education for the improvement of reading skills and academic achievement in young poor readers: a pragmatic cluster-randomized, controlled clinical trial. PLoS ONE 8:e59984. 10.1371/journal.pone.0059984
    1. Corriveau K. H., Goswami U. (2009). Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex 45, 119–130. 10.1016/j.cortex.2007.09.008
    1. Cramer S. C., Sur M., Dobkin B. H., O’Brien C., Sanger T. D., Trojanowski J. Q., et al. (2011). Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609. 10.1093/brain/awr039
    1. Cummins F., Port R. F. (1998). Rhythmic constraints on stress timing in English. J. Phon. 26, 145–171 10.1006/jpho.1998.0070
    1. Degé F., Schwarzer G. (2011). The effect of a music program on phonological awareness in preschoolers. Front. Psychol. 2:124. 10.3389/fpsyg.2011.00124
    1. Démonet J. F., Taylor M. J., Chaix Y. (2004). Developmental dyslexia. Lancet 363, 1451–1460 10.1016/S0140-6736(04)16106-0
    1. Dontje M. L., de Greef M. H., Speelman A. D., van Nimwegen M., Krijnen W. P., Stolk R. P., et al. (2013). Quantifying daily physical activity and determinants in sedentary patients with Parkinson’s disease. Parkinsonism Relat. Disord. 19, 878–882. 10.1016/j.parkreldis.2013.05.014
    1. Dorsey E. R., Constantinescu R., Thompson J. P., Biglan K. M., Holloway R. G., Kieburtz K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386. 10.1212/01.wnl.0000247740.47667.03
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312. 10.1038/427311a
    1. Drennan W. R., Rubinstein J. T. (2008). Music perception in cochlear implant users and its relationship with psychophysical capabilities. J. Rehabil. Res. Dev. 45, 779–789. 10.1682/JRRD.2007.08.0118
    1. Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307. 10.1126/science.270.5234.305
    1. Feigin V. L., Forouzanfar M. H., Krishnamurthi R., Mensah G. A., Connor M., Bennet D. A., et al. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 383, 245–254. 10.1016/S0140-6736(13)61953-4
    1. Fernandez del Olmo M., Cudeiro J. (2003). A simple procedure using auditory stimuli to improve movement in Parkinson’s disease: a pilot study. Neurol. Clin. Neurophysiol. 2003, 1–7.
    1. Fernandez del Olmo M., Cudeiro J. (2005). Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues. Parkinsonism Relat. Disord. 11, 25–33. 10.1016/j.parkreldis.2004.09.002
    1. Flaugnacco E., Lopez L., Terribili C., Zoia S., Buda S., Tilli S., et al. (2014). Rhythm perception and production predict reading abilities in developmental dyslexia. Front. Hum. Neurosci. 8:392. 10.3389/fnhum.2014.00392
    1. Forsblom A., Laitinen S., Särkämö T., Tervaniemi M. (2009). Therapeutic role of music listening in stroke rehabilitation. Ann. N. Y. Acad. Sci. 1169, 426–430. 10.1111/j.1749-6632.2009.04776.x
    1. François C., Chobert J., Besson M., Schön D. (2013). Music training for the development of speech segmentation. Cereb. Cortex 23, 2038–2043. 10.1093/cercor/bhs180
    1. François C., Jaillet S., Takerkart S., Schön D. (2014). Faster word segmentation in musicians than in nonmusicians. PLoS ONE 9:e101340. 10.1371/journal.pone.0101340
    1. François C., Schön D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 21, 2357–2365. 10.1093/cercor/bhr022
    1. François C., Schön D. (2014). Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice. Hear. Res. 308, 122–128. 10.1016/j.heares.2013.08.018
    1. Freedland R. L., Festa C., Sealy M., McBean A., Elghazaly P., Capan A., et al. (2002). The effects of pulsed auditory stimulation on various gait measurements in persons with Parkinson’s disease. NeuroRehabilitation 17, 81–87.
    1. Friedman N., Chan V., Reinkensmeyer A. N., Beroukhim A., Zambrano G. J., Bachman M., et al. (2014). Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional therapy and isometric grip training. J. Neuroeng. Rehabil. 11, 76. 10.1186/1743-0003-11-76
    1. Fujioka T., Trainor L. J., Ross B., Kakigi R., Pantev C. (2004). Musical training enhances automatic encoding of melodic contour and interval structure. J. Cogn. Neurosci. 16, 1010–1021. 10.1162/0898929041502706
    1. Fukui H., Toyoshima K. (2008). Music facilitates the neurogenesis, regeneration and repair of neurons. Med. Hypotheses 71, 765–769. 10.1016/j.mehy.2008.06.019
    1. Gaser C., Schlaug G. (2003). Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245.
    1. Gillen G. (2010). Stroke Rehabilitation. St. Louis: Mosby, Elsevier.
    1. Goswami U. (2010). “Language, music and children’s brains: a rhythmic timing perspective on language and music as cognitive systems,” in Language and Music as Cognitive Systems, eds Rebuschat P, Rohrmeier M., Hawkins J., Cross I. (Oxford: Oxford University Press; ), 292–301.
    1. Goswami U., Wang H. L. S., Cruz A., Fosker T., Mead N., Huss M. (2011). Language universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. J. Cogn. Neurosci. 23, 325–337. 10.1162/jocn.2010.21453
    1. Grahn J. A., Brett M. (2007). Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906. 10.1162/jocn.2007.19.5.893
    1. Grahn J. A., Rowe J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci. 29, 7540–7548. 10.1523/JNEUROSCI.2018-08.2009
    1. Granert O., Peller M., Gaser C., Groppa S., Hallett M., Knutzen , et al. (2011). Manual activity shapes structure and function in contralateral human motor hand area. Neuroimage 54, 32–41. 10.1016/j.neuroimage.2010.08.013
    1. Grau-Sánchez J., Amengual J. L., Rojo N., Veciana de las Heras M., Montero J., Rubio F., et al. (2013). Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study. Front. Hum. Neurosci. 7:494. 10.3389/fnhum.2013.00494
    1. Grimm S., Escera C. (2011). Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int. J. Psychophysiol. 85, 88–92. 10.1016/j.ijpsycho.2011.05.012
    1. Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., Platel H. (2014). The effects of musical practice on structural plasticity: the dynamics of grey matter changes. Brain Cogn. 90, 174–180. 10.1016/j.bandc.2014.06.013
    1. Habermeyer B., Herdener M., Esposito F., Hilti C. C., Klarhöfer M., di Salle F., Wetzel S., et al. (2009). Neural correlates of pre-attentive processing of pattern deviance in professional musicians. Hum. Brain Mapp. 30, 3736–3747. 10.1002/hbm.20802
    1. Hackett M. L., Anderson C. S., House A., Xia J. (2008). Interventions for treating depression after stroke. Cochrane Database Syst. Rev. 4:CD003437 10.1002/14651858.CD003437.pub3
    1. Hackett M. L., Yapa C., Parag V., Anderson C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke 36, 1330–1340. 10.1161/01.STR.0000165928.19135.35
    1. Hackett M. L., Yang M., Anderson C. S., Horrocks J. A., House A. (2010). Pharmaceutical interventions for emotionalism after stroke. Cochrane Database Syst. Rev. 2:CD003690. 10.1002/14651858.CD003690.pub3
    1. Halwani G. F., Loui P., Rüber T., Schlaug G. (2011). Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front. Psychol. 2:156. 10.3389/fpsyg.2011.00156
    1. Haueisen J., Knösche T. R. (2001). Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792. 10.1162/08989290152541449
    1. Herholz S. C., Zatorre R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76, 486–502. 10.1016/j.neuron.2012.10.011
    1. Huron D. (2001). Is music an evolutionary adaptation? Ann. N. Y. Acad. Sci. 930, 43–61. 10.1111/j.1749-6632.2001.tb05724.x
    1. Huss M., Verney J. P., Fosker T., Mead N., Goswami U. (2011). Music, rhythm, rise time perception and developmental dyslexia: perception of musical meter predicts reading and phonology. Cortex 47, 674–689. 10.1016/j.cortex.2010.07.010
    1. Hutchinson S., Lee L. H. L., Gaab N., Schlaug G. (2003). Cerebellar volume: gender and musicianship effects. Cereb. Cortex 13, 943–949. 10.1093/cercor/13.9.943
    1. Hyde K. L., Lerch J., Norton A., Forgeard M., Winner E., Evans A. C., et al. (2009). Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025. 10.1523/JNEUROSCI.5118-08.2009
    1. Imfeld A., Oechslin M. S., Meyer M., Loenneker T., Jäncke L. (2009). White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 46, 600–607. 10.1016/j.neuroimage.2009.02.025
    1. Jäncke L., Shah N. J., Peters M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res. Cogn. Brain Res. 10, 177–183. 10.1016/S0926-6410(00)00028-8
    1. James C. E., Oechslin M. S., Van De Ville D., Hauert C. A., Descloux C., Lazeyras F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct. Funct. 219, 353–366. 10.1007/s00429-013-0504-z
    1. Jebsen R. H., Taylor N., Trieschmann R. B., Trotter M. J., Howard l. A. (1969). An objective and standardized test of hand function. Arch. Phys. Med. Rehabil. 50, 311–319.
    1. Johansson B. B. (2011). Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 123, 147–159. 10.1111/j.1600-0404.2010.01417.x
    1. Jones M. R., Jagacinski R. J., Yee W., Floyd R. L., Klapp S. T. (1995). Tests of attentional flexibility in listening to polyrhythmic patterns. J. Exp. Psychol. Hum. Percept. Perform. 21, 293–307. 10.1037/0096-1523.21.2.293
    1. Keenan J. P., Thangaraj V., Halpern A. R., Schlaug G. (2001). Absolute pitch and planum temporale. Neuroimage 14, 1402–1408. 10.1006/nimg.2001.0925
    1. Kim S. D., Allena N. E., Canning C. G., Fung V. S. (2013). Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 27, 97–112. 10.1007/s40263-012-0012-3
    1. Kishon-Rabin L., Amir O., Vexler Y., Zaltz Y. (2001). Pitch discrimination: are professional musicians better than non-musicians? J. Basic Clin. Physiol. Pharmacol. 12(Suppl. 2), 125–143. 10.1515/JBCPP.2001.12.2.125
    1. Knecht H. A., Nelson P. B., Whitelaw G. M., Feth L. L. (2002). Background noise levels and reverberation times in unoccupied classrooms: predictions and measurements. Am. J. Audiol. 11, 65–71. 10.1044/1059-0889(2002/009)
    1. Koelsch S., Fritz T., Schulze K., Alsop D., Schlaug G. (2005). Adults and children processing music: an fMRI study. Neuroimage 25, 1068–1076. 10.1016/j.neuroimage.2004.12.050
    1. Kolb B., Muhammad A. (2014). Harnessing the power of neuroplasticity for intervention. Front. Hum. Neurosci. 8:377. 10.3389/fnhum.2014.00377
    1. Kolb B., Mychasiuk R., Muhammad A., Li Y., Frost D. O., Gibb R. (2012). Experience and the developing prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 109, 17186–17193. 10.1073/pnas.1121251109
    1. Kolb B., Telskey G. C. (2012). Age, experience, injury, and the changing brain. Dev. Psychobiol. 54, 311–325. 10.1002/dev.20515
    1. Krakauer J. W., Carmichael S. T., Corbett D., Wittenberg G. F. (2012). Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil. Neural Repair 26, 923–931. 10.1177/1545968312440745
    1. Krampe R. T., Ericsson K. A. (1996). Maintaining excellence: deliberate practice and elite performance in young and older pianists. J. Exp. Psychol. Gen. 125, 331–359. 10.1037/0096-3445.125.4.331
    1. Kraus N., Chandrasekaran B. (2010). Music training for the development of auditory skills. Nat. Rev. Neurosci. 11, 599–605. 10.1038/nrn2882
    1. Lahav A., Saltzman E., Schlaug G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314. 10.1523/JNEUROSCI.4822-06.2007
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754 10.1016/S1474-4422(09)70150-4
    1. Ledger S., Galvin R., Lynch D., Stokes E. K. (2008). A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson’s disease. BMC Neurol. 8:46. 10.1186/1471-2377-8-46
    1. Li J., Luo C., Peng Y., Xie Q., Gong J., Dong L., et al. (2014). Probabilistic diffusion tractography reveals improvement of structural network in musicians. PLoS ONE 9:e105508. 10.1371/journal.pone.0105508
    1. Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128. 10.1016/S0140-6736(12)61728-0
    1. Lyle R. C. (1981). A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehab. Res. 4, 483–492. 10.1097/00004356-198112000-00001
    1. Lyon R., Shaywitz S. E., Shaywitz B. A. (2003). Defining dyslexia, comorbidity, teachers’ knowledge of language and reading. Ann. Dyslexia 53, 1–14 10.1007/s11881-003-0001-9
    1. Magne C., Schön D., Besson M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J. Cogn. Neurosci. 18, 199–211. 10.1162/jocn.2006.18.2.199
    1. Maidhof C. (2013). Error monitoring in musicians. Front. Hum. Neurosci. 7:401. 10.3389/fnhum.2013.00401
    1. Maidhof C., Pitkäniemi A., Tervaniemi M. (2013). Predictive error detection in pianists: a combined ERP and motion capture study. Front. Hum. Neurosci. 7:587. 10.3389/fnhum.2013.00587
    1. Marie C., Magne C., Besson M. (2011). Musicians and the metric structure of words. J. Cogn. Neurosci. 23, 294–305. 10.1162/jocn.2010.21413
    1. Marques C., Moreno S., Castro S. L., Besson M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. J. Cogn. Neurosci. 19, 1453–1463. 10.1162/jocn.2007.19.9.1453
    1. Mas-Herrero E., Zatorre R. J., Rodriguez-Fornells A., Marco-Pallarés J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 24, 699–704. 10.1016/j.cub.2014.01.068
    1. Mathiowetz V., Volland G., Kashman N., Weber K. (1985). Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 39, 386–391. 10.5014/ajot.39.6.386
    1. McDermott H. J. (2004). Music perception with cochlear implants: a review. Trends Amplif. 8, 49–82. 10.1177/108471380400800203
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62, 22–26. 10.1136/jnnp.62.1.22
    1. McIntosh G. C., Rice R. R., Hurt C. P., Thaut M. H. (1998). Long-term training effects of rhythmic auditory stimulation on gait in patients with Parkinson’s disease. Mov. Disord. 13, 212.
    1. Meister I., Krings T., Foltys H., Boroojerdi B., Müller M., Töpper R., et al. (2005). Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks:implications for cortical motor organization. Hum. Brain Mapp. 25, 345–352. 10.1002/hbm.20112
    1. Micheyl C., Delhommeau K., Perrot X., Oxenham A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 219, 36–47. 10.1016/j.heares.2006.05.004
    1. Mishra S. K., Panda M. R., Herbert C. (2014). Enhanced auditory temporal gap detection in listeners with musical training. J. Acoust. Soc. Am. 136, EL173–EL178. 10.1121/1.4890207
    1. Mohr J. P., Grotta J. C., Wolf P. A., Moskowitz M. A., Mayberg M. R., Von Kummer R. (2011). Stroke: Pathophysiology, Diagnosis, and Management. Phyladelphia: Saunders, Elsevier.
    1. Moreno S., Marques C., Santos A., Santos M., Castro S. L., Besson M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex 19, 712–713. 10.1093/cercor/bhn120
    1. Münte T. F., Altenmüller E., Jäncke L. (2002). The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 473–478. 10.1038/nrn843
    1. Murray C. J. L., Vos T., Lozano R., Naghavi M., Flaxman A. D., Michaud C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223. 10.1016/S0140-6736(12)61689-4
    1. Musacchia G., Sams M., Skoe E., Kraus N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. U.S.A. 104, 15894–15898. 10.1073/pnas.0701498104
    1. Näätänen R., Jacobsen T., Winkler I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42, 25–32. 10.1111/j.1469-8986.2005.00256.x
    1. Neuman A. C., Wroblewski M., Hajicek J., Rubinstein A. (2010). Combined effects of noise and reverberation on speech recognition performance of normal-hearing children and adults. Ear Hear. 31, 336–344. 10.1097/AUD.0b013e3181d3d514
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37, 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. OECD. (2014). PISA 2012 Results: What Students Know and Can Do–Student Performance in Mathematics, Reading and Science, Vol. 1. London: OECD Publishing.
    1. Oechslin M. S., Imfeld A., Loenneker T., Meyer M., Jäncke L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front. Hum. Neurosci. 3:76. 10.3389/neuro.09.076.2009
    1. Okuma Y., Yanagisawa N. (2008). The clinical spectrum of freezing of gait in Parkinson’s disease. Mov. Disord. 25, 149–156. 10.1002/mds.21934
    1. Oremus M., Santaguida P., Walker K., Wishart L. R., Siegel K. L., Raina P. (2012). Studies of stroke rehabilitation therapies should report blinding and rationalize use of outcome measurement instruments. J. Clin. Epidemiol. 65, 368–374. 10.1016/j.jclinepi.2011.10.013
    1. Overy K. (2000). Dyslexia, temporal processing and music: the potential of music as an early learning aid for dyslexic children. Psychol. Music 28, 218–229 10.1177/0305735600282010
    1. Overy K. (2003). Dyslexia and music: from timing deficits to musical intervention. Ann. N. Y. Acad. Sci. 999, 497–505. 10.1196/annals.1284.060
    1. Overy K. (2012). Making music in a group: synchronization and shared experience. Ann. N. Y. Acad. Sci. 1252, 65–68. 10.1111/j.1749-6632.2012.06530.x
    1. Pantev C., Herholz S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neurosci. Biobehav. Rev. 35, 2140–2154. 10.1016/j.neubiorev.2011.06.010
    1. Pantev C., Oostenveld R., Engelien A., Ross B., Roberts L. E., Hoke M. (1998). Increased auditory cortical representation in musicians. Nature 392, 811–814. 10.1038/33918
    1. Pantev C., Roberts L. E., Schulz M., Engelien A., Ross B. (2001). Timbre specific enhancement of auditory cortical representations in musicians. Neuroimage 12, 169–174. 10.1097/00001756-200101220-00041
    1. Parbery-Clark A., Skoe E., Kraus N. (2009a). Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 29, 14100–14107. 10.1523/JNEUROSCI.3256-09.2009
    1. Parbery-Clark A., Skoe E., Lam C., Kraus N. (2009b). Musician enhancement for speech in noise. Ear Hear. 30, 653–661. 10.1097/AUD.0b013e3181b412e9
    1. Parbery-Clark A., Tierney A., Strait D. L., Kraus N. (2012). Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 219, 111–119. 10.1016/j.neuroscience.2012.05.042
    1. Parker V. M., Wade D. T., Langton-Hewer R. (1986). Loss of arm function after stroke: measurement, frequency and recovery. Int. Rehabil. Med. 8, 69–73. 10.3109/03790798609166178
    1. Pascual-Leone A., Nguyet D., Cohen L. G., Brasil-Nieto J. P., Cammarota A., Hallett M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1045.
    1. Patel A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA Hypothesis. Front. Psychol. 2:142. 10.3389/fpsyg.2011.00142
    1. Patel A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hear. Res. 308, 98–108. 10.1016/j.heares.2013.08.011
    1. Penhune V. (2011). Sensitive periods in human development: evidence from musical training. Cortex 47, 1126–1137. 10.1016/j.cortex.2011.05.010
    1. Perrot X., Collet L. (2014). Function and plasticity of the medial olivocochlear system in musicians: a review. Hear. Res. 308, 27–40. 10.1016/j.heares.2013.08.010
    1. Perrot X., Micheyl C., Khalfa S., Collet L. (1999). Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians. Neurosci. Lett. 262, 167–170. 10.1016/S0304-3940(99)00044-0
    1. Pfordresher P. Q., Beasley R. T. (2014). Making and monitoring errors based on altered auditory feedback. Front. Psychol. 5:l914. 10.3389/fpsyg.2014.00914
    1. Port R. F. (2003). Meter and speech. J. Phon. 31, 599–611 10.1016/j.wocn.2003.08.001
    1. Przybylski L., Bedoin N., Krifi-Papoz S., Herbillon V., Roch D., Léculier L., et al. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology 27, 121–131. 10.1037/a0031277
    1. Putkinen V., Tervaniemi M., Saarikivi K., Ojala P., Huotilainen M. (2014). Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev. Sci. 17, 282–297. 10.1111/desc.12109
    1. Quené H., Port R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica 62, 1–13. 10.1159/000087222
    1. Rammsayer T., Altenmüller E. (2006). Temporal information processing in musicians and nonmusicians. Music Percept. 24, 37–48 10.1525/mp.2006.24.1.37
    1. Ramus F. (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr. Opin. Neurobiol. 13, 212–218 10.1016/S0959-4388(03)00035-7
    1. Rathore S. S., Hinn A. R., Cooper L. S., Tyroler H. A., Rosamond W. D. (2002). Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 33, 2718–2721. 10.1161/01.STR.0000035286.87503.31
    1. Rochette F., Moussard A., Bigand E. (2014). Music lessons improve auditory perceptual and cognitive performance in deaf children. Front. Hum. Neurosci. 8:488. 10.3389/fnhum.2014.00488
    1. Rodríguez-Fornells A., Rojo N., Amengual J. L., Ripollés P., Altenmüller E., Münte T. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. 1252, 282–293. 10.1111/j.1749-6632.2011.06425.x
    1. Rojo N., Amengual J. L., Juncadella M., Rubio F., Camara E., Marco-Pallares J., et al. (2011). Music-supported therapy induces plasticity in the sensorimotor cortex in chronic stroke: a single-case study using multimodal imaging (fMRI-TMS). Brain Inj. 25, 787–793. 10.3109/02699052.2011.576305
    1. Russo N., Nicol T., Musacchia G., Kraus N. (2004). Brainstem responses to speech syllables. Clin. Neurophysiol. 115, 2021–2030. 10.1016/j.clinph.2004.04.003
    1. Saffran J. R., Newport E. L., Aslin R. N. (1996). Word segmentation: the role of distributional cues. J. Mem. Lang. 35, 606–621 10.1006/jmla.1996.0032
    1. Salimpoor V. N., van den Bosch I., Kovacevic N., McIntosh A. R., Dagher A., Zatorre R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219. 10.1126/science.1231059
    1. Salomon J. A., Wang H., Freeman M. K., Vos T., Flaxman A. D., Lopez A. D., et al. (2012). Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162. 10.1016/S0140-6736(12)61690-0
    1. Sanes D. H., Constantine-Paton M. (1985). The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J. Neurosci. 5, 1152–1166.
    1. Särkämö T., Ripollés P., Vepsäläinen H., Autti T., Silvennoinen H. M., Salli E., et al. (2014). Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front. Hum. Neurosci. 8:245. 10.3389/fnhum.2014.00245
    1. Särkämö T., Tervaniemi M., Laitinen S., Forsblom A., Soinila S., Mikkonen M., et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 131, 866–876. 10.1093/brain/awn013
    1. Schellenberg E. G. (2004). Music lessons enhance IQ. Psychol. Sci. 15, 511–514. 10.1111/j.0956-7976.2004.00711.x
    1. Schlaug G., Jäncke L., Huang Y., Steinmetz H. (1995a). In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701. 10.1126/science.7839149
    1. Schlaug G., Jäncke L., Huang Y., Staiger J. F., Steinmetz H. (1995b). Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055. 10.1016/0028-3932(95)00045-5
    1. Schlaug G. (2001). The brain of musicians. A model for functional and structural adaptation. Ann. N. Y. Acad. Sci. 930, 281–299. 10.1111/j.1749-6632.2001.tb05739.x
    1. Schmithorst V. J., Wilke M. (2002). Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci. Lett. 321, 57–60. 10.1016/S0304-3940(02)00054-X
    1. Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., Rupp A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 5, 688–694. 10.1038/nn871
    1. Schneider P., Sluming V., Roberts N., Scherg M., Goebel R., Specht H. J., et al. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat. Neurosci. 8, 1241–1247. 10.1038/nn1530
    1. Schneider S., Schönle P. W., Altenmüller E., Münte T. F. (2007). Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 254, 1339–1346. 10.1007/s00415-006-0523-2
    1. Schön D., Gordon R., Campagne A., Magne C., Astésano C., Anton J. L., et al. (2010). Similar cerebral networks in language, music and song perception. Neuroimage 51, 450–461. 10.1016/j.neuroimage.2010.02.023
    1. Schön D., Magne C., Besson M. (2004). The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology 41, 341–349. 10.1111/1469-8986.00172.x
    1. Serniclaes W., Van Heghe S., Mousty P., Carré R., Sprenger-Charolles L. (2004). Allophonic mode of speech perception in dyslexia. J. Exp. Child Psychol. 87, 336–361. 10.1016/j.jecp.2004.02.001
    1. Shahin A., Bosnyak D. J., Trainor L. J., Roberts L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J. Neurosci. 23, 5545–5552.
    1. Shahin A., Roberts L. E., Trainor L. J. (2004). Enhancement of auditory cortical development by musical experience in children. Neuroimage 15, 1917–1921. 10.1097/00001756-200408260-00017
    1. Shield B. M., Dockrell J. E. (2008). The effects of environmental and classroom noise on the academic attainments of primary school children. J. Acoust. Soc. Am. 123, 133–144. 10.1121/1.2812596
    1. Skoe E., Kraus N. (2012). A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci. 32, 11507–11510. 10.1523/JNEUROSCI.1949-12.2012
    1. Slevc L. R., Miyake A. (2006). Individual differences in second-language proficiency: does musical ability matter? Psychol. Sci. 17, 675–681. 10.1111/j.1467-9280.2006.01765.x
    1. Steele C. J., Bailey J. A., Zatorre R. J., Panhune V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33, 1282–1290. 10.1523/JNEUROSCI.3578-12.2013
    1. Stoessl A. J., Lehericy S., Strafella A. P. (2014). Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 384, 532–544. 10.1016/S0140-6736(14)60041-6
    1. Strait D. L., Kraus N. (2011). Playing music for a smarter ear: cognitive, perceptual and neurobiological evidence. Music Percept. 29, 133–146. 10.1525/mp.2011.29.2.133
    1. Strait D. L., O’Connell S., Parbery-Clark A., Kraus N. (2013). Musicians’ enhanced neural differentiation of speech sounds arises early in life: developmental evidence from ages 3–30. Cereb. Cortex 24, 2512–2521. 10.1093/cercor/bht103
    1. Strait D. L., Parbery-Clark A., Hittner E., Kraus N. (2012). Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 123, 191–201. 10.1016/j.bandl.2012.09.001
    1. Tervaniemi M., Just V., Koelsch S., Widmann A., Schröger E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Exp. Brain Res. 171, 1–10. 10.1007/s00221-004-2044-5
    1. Tervaniemi M., Rytkönen M., Schröger E., Ilmoniemi R. J., Näätänen R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learn. Mem. 8, 295–300. 10.1101/lm.39501
    1. Thaut M. H., Abiru M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 27, 263–269 10.1525/mp.2010.27.4.263
    1. Thaut M. H., Leins A. K., Rice R. R., Argstatter H., Kenyon G. P., McIntosh G. C., et al. (2007). Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single- blind, randomized trial. Neurorehabil. Neural Repair 21, 455–459. 10.1177/1545968307300523
    1. Thaut M. H., McIntosh G. C., Hoemberg V. (2014). Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front. Psychol. 5:1185. 10.3389/fpsyg.2014.01185
    1. Thaut M. H., McIntosh G. C., Rice R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 151, 207–212. 10.1016/S0022-510X(97)00146-9
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 11, 193–200. 10.1002/mds.870110213
    1. Thomson J. M., Goswami U. (2008). Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling. J. Physiol. Paris 102, 120–129. 10.1016/j.jphysparis.2008.03.007
    1. Tieges Z., Mead G., Allerhand M., Duncan F., van Wijck F., Fitzsimons C., et al. (2015). Sedentary behaviour in the first year after stroke: a longitudinal cohort study with objective measures. Arch. Phys. Med. Rehabil. 96, 15–23. 10.1016/j.apmr.2014.08.015
    1. Tierney A., Kraus N. (2013). Music training for the development of reading skills. Prog. Brain Res. 207, 209–241. 10.1016/B978-0-444-63327-9.00008-4
    1. Tierney A., Krizman J., Skoe E., Johnston K., Kraus N. (2013). High school music classes enhance the neural processing of speech. Front. Educ. Psychol. 4:855. 10.3389/fpsyg.2013.00855
    1. Trainor L. J., McDonald K. L., Alain C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. J. Cogn. Neurosci. 14, 1–13. 10.1162/089892902317361949
    1. Trainor L. J., Shahin A., Roberts L. E. (2003). Effects of musical training on the auditory cortex in children. Ann. N. Y. Acad. Sci. 999, 506–513. 10.1196/annals.1284.061
    1. Truelsen T., Piechowski-Józwiak B., Bonita R., Mathers C., Bogousslavsky J., Boysen G. (2006). Stroke incidence and prevalence in Europe: a review of available data. Eur. J. Neurol. 13, 581–598. 10.1111/j.1468-1331.2006.01138.x
    1. Van Vugt F. T., Ritter J., Rollnik J. D., Altenmüller E. (2014). Music-supported motor training after stroke reveals no superiority of synchronization in group therapy. Front. Hum. Neurosci. 8:315. 10.3389/fnhum.2014.00315
    1. Van Zuijen T., Sussman E., Winkler I., Näätänen R., Tervaniemi M. (2005). Auditory organization of sound sequences by a temporal or numerical regularity—a mismatch negativity study sounds comparing musicians and non-musicians. Cogn. Brain Res. 23, 270–276. 10.1016/j.cogbrainres.2004.10.007
    1. Vellutino F. R., Fletcher J. M., Snowling M. J., Scanlon D. M. (2004). Specific reading disability (dyslexia): what have we learned in the past four decades? J. Child Psychol. Psychiatry 45, 2–40. 10.1046/j.0021-9630.2003.00305.x
    1. Vigneau M., Beaucousin V., Herve P. Y., Duffau H., Crivello F., Houde O., et al. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432. 10.1016/j.neuroimage.2005.11.002
    1. Villeneuve M., Penhune V., Lamontagne A. (2014). A piano training program to improve manual dexterity and upper extremity function in chronic stroke survivors. Front. Hum. Neurosci. 8:662. 10.3389/fnhum.2014.00662
    1. Vuust P., Brattico E., Glerean E., Seppänen M., Pakarinen S., Tervaniemi M., et al. (2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex 47, 1091–1098. 10.1016/j.cortex.2011.04.026
    1. Vuust P., Pallesen K. J., Bailey C., van Zuijen T. L., Gjedde A., Roepstor V. A. (2005). To musicians, the message is in the meter—preattentive neuronal responses to incongruent rhythm are left lateralized in musicians. Neuroimage 24, 560–564. 10.1016/j.neuroimage.2004.08.039
    1. Wade D. T., Langton-Hewer R., Wood V. A., Skilbeck C. E., Ismail H. M. (1983). The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46, 521–524. 10.1136/jnnp.46.6.521
    1. Wan C. Y., Schlaug G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16, 566–577. 10.1177/1073858410377805
    1. Warrier C. M., Johnson K. L., Hayes E. A., Nicol T., Kraus N. (2004). Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise. Exp. Brain Res. 157, 431–441. 10.1007/s00221-004-1857-6
    1. White-Schwoch T., Carr K. W., Anderson S., Strait D. L., Kraus N. (2013). Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J. Neurosci. 33, 17667–17674. 10.1523/JNEUROSCI.2560-13.2013
    1. Whyte E. M., Mulsant B. H. (2002). Post-stroke depression: epidemiology, pathophysiology, and biological treatment. Biol. Psychiatry 52, 253–264. 10.1016/S0006-3223(02)01424-5
    1. Wible B., Nicol T., Kraus N. (2004). Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biol. Psychol. 67, 299–317. 10.1016/j.biopsycho.2004.02.002
    1. Willems A. M., Nieuwboer A., Chavret F., Desloovere K., Dom R., Rochester L., et al. (2006). The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 28, 721–728. 10.1080/09638280500386569
    1. Wittner J. E., Webster K. E., Hill K. (2013). Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson’s disease-what is the evidence? Dissabil. Rehabil. 35, 164–176. 10.3109/09638288.2012.690495
    1. Woodruff Carr K., White-Schwoch T., Tierney A. T., Strait D. L., Kraus N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proc. Natl. Acad. Sci. U.S.A. 111, 14559–14564. 10.1073/pnas.1406219111
    1. Zatorre R. J. (2013). Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342, 585–589. 10.1126/science.1238414
    1. Zeiler S. R., Krakauer J. W. (2013). The interaction between training and plasticity in the poststroke brain. Curr. Opin. Neurol. 26, 609–616. 10.1097/WCO.0000000000000025
    1. Zendel B. R., Alain C. (2012). Musicians experience less age-related decline in central auditory processing. Psychol. Aging. 27, 410–417. 10.1037/a0024816
    1. Zendel B. R., Alain C. (2013). The influence of lifelong musicianship on neurophysiological measures of concurrent sound segregation. J. Cogn. Neurosci. 25, 503–516. 10.1162/jocn_a_00329
    1. Zhang L. I., Bao S., Merzenich M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4, 1123–1130. 10.1038/nn745
    1. Ziegler J. C., Goswami U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol. Bull. 131, 3–29. 10.1037/0033-2909.131.1.3
    1. Ziegler J. C., Pech-Georgel C., George F., Alario F. X., Lorenzi C. (2005). Deficits in speech perception predict language learning impairment. Proc. Natl. Acad. Sci. U.S.A. 102, 14110–14115. 10.1073/pnas.0504446102
    1. Ziegler J. C., Pech-Georgel C., George F., Lorenzi C. (2009). Speech-perception-in-noise deficits in dyslexia. Dev. Sci. 12, 732–745. 10.1111/j.1467-7687.2009.00817.x
    1. Zuk J., Andrade P. E., Andrade O. V., Gardiner M., Gaab N. (2013). Musical, language, and reading abilities in early Portuguese readers. Front. Psychol. 4:288. 10.3389/fpsyg.2013.00288

Source: PubMed

3
S'abonner