Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial

Soledad Ballesteros, Antonio Prieto, Julia Mayas, Pilar Toril, Carmen Pita, Laura Ponce de León, José M Reales, John Waterworth, Soledad Ballesteros, Antonio Prieto, Julia Mayas, Pilar Toril, Carmen Pita, Laura Ponce de León, José M Reales, John Waterworth

Abstract

Age-related cognitive and brain declines can result in functional deterioration in many cognitive domains, dependency, and dementia. A major goal of aging research is to investigate methods that help to maintain brain health, cognition, independent living and wellbeing in older adults. This randomized controlled study investigated the effects of 20 1-h non-action video game training sessions with games selected from a commercially available package (Lumosity) on a series of age-declined cognitive functions and subjective wellbeing. Two groups of healthy older adults participated in the study, the experimental group who received the training and the control group who attended three meetings with the research team along the study. Groups were similar at baseline on demographics, vocabulary, global cognition, and depression status. All participants were assessed individually before and after the intervention, or a similar period of time, using neuropsychological tests and laboratory tasks to investigate possible transfer effects. The results showed significant improvements in the trained group, and no variation in the control group, in processing speed (choice reaction time), attention (reduction of distraction and increase of alertness), immediate and delayed visual recognition memory, as well as a trend to improve in Affection and Assertivity, two dimensions of the Wellbeing Scale. Visuospatial working memory (WM) and executive control (shifting strategy) did not improve. Overall, the current results support the idea that training healthy older adults with non-action video games will enhance some cognitive abilities but not others.

Keywords: attention; brain plasticity; cognitive aging; non-action video games; speed of processing; training; wellbeing.

Figures

Figure 1
Figure 1
Consort flowchart.
Figure 2
Figure 2
(A) Average performance scores obtained in each of the 10 non-action video games across the 20 training sessions in Z scores (mean 0; standard deviation 1). (B) Average response times of 4 video games across the 20 training sessions in Z scores.
Figure 3
Figure 3
Mean performance of trained and control groups at pretest and post-test. (A) Simple and choice RT tasks. (B) Distraction and alertness effects in the Cross-modal oddball attention task. (C) Family pictures (Scenes) inmediate. (D) Family pictures (Scenes) delayed. Error bars represent plus and minus 1 standard error. *p < 0.05.

References

    1. Ackerman P. L., Kanfer R., Calderwood C. (2010). Use it or lose it? Wii brain exercise practice and reading for domain knowledge. Psychol. Aging 25, 753–766 10.1037/a0019277
    1. Andrés P., Parmentier F. B. R., Escera C. (2006). The effect of age on involuntary capture of attention by irrelevant sounds: a test of the frontal hypothesis of aging. Neuropsychologia 44, 2564–2568 10.1016/j.neuropsychologia.2006.05.005
    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. (2013). Video game training enhances cognitive control in older adults. Nature 501, 97–101 10.1038/nature12486
    1. Baddeley A. D., Hitch G. (1974). Working memory, in The Psychology of Learning and Motivation, ed Bower G. H. (New York, NY: Academic Press; ), 47–89
    1. Ball K., Berch D. B., Helmer K. F., Jobe J. B., Leveck M. D., Marsiske M., et al. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288, 2271–2281 10.1001/jama.288.18.2271
    1. Ball K., Edwards J. D., Ross L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. J. Geront. B Psychol. Sci. Soc. Sci. 62, 19–31 10.1093/geronb/62.special_issue_1.19
    1. Ballesteros S., Bischof G. N., Goh J. O., Park D. C. (2013a). Neural correlates of conceptual object priming in young and older adults: an event-related fMRI study. Neurobiol. Aging 34, 1254–1264 10.1016/j.neurobiolaging.2012.09.019
    1. Ballesteros S., Mayas J., Reales J. M. (2013b). Cognitive function in normal aging and in older adults with mild cognitive impairment. Psicothema 25, 18–24 10.7334/psicothema2012.181
    1. Ballesteros S., Mayas J., Reales J. M. (2013c). Effects of a long-term physically active lifestyle on cognitive functioning in older adults. Curr. Aging Sci. 6, 189–198 10.2174/18746098112059990001
    1. Ballesteros S., Reales J. M. (2004). Intact haptic priming in normal aging and Alzheimer's disease: evidence for dissociable memory systems. Neuropsychologia 44, 1063–1070 10.1016/j.neuropsychologia.2003.12.008
    1. Baltes P. B., Lindenberger U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol. Aging 12, 12–21 10.1037//0882-7974.12.1.12
    1. Basak C., Boot W. R., Voss M. W., Kramer A. F. (2008). Can training in real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 23, 765–777 10.1037/a0013494
    1. Bavelier D., Green C. S., Pouget A., Schacter P. (2012). Brain plasticity through the lifespan: learning to learn and action video games. Annu. Rev. Neurosci. 35, 391–416 10.1146/annurev-neuro-060909-152832
    1. Berry A. S., Zanto T. P., Clapp W. C., Hardy J. L., Delahunt P. B., Mhancke H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS ONE 5:e11537 10.1371/journal.pone.110537
    1. Bherer L., Kramer A. F., Peterson M. S., Colcombe S., Erickson K., Becic E. (2006). Testing the limits of cognitive plasticity in older adults: application to attentional control. Acta Psychol. 123, 261–278 10.1016/j.actpsy.2006.01.005
    1. Bialystok E., Craik F. I. M. (2006). Lifespan Cognition: Mechanisms of Change. Oxford: Oxford University Press
    1. Boot W. R., Champion M., Blakely D. P., Wright T., Souders D. J., Charness N. (2013). Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness. Front. Psychol. 4:31 10.3389/fpsyg.00031
    1. Boot W. R., Kramer A. F., Simons D. J., Fabiani M., Gratton G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychol. 129, 387–398 10.1016/j.actpsy.2008.09.005
    1. Brookmeyer R., Evans D. A., Hebert L., Langa K. M., Heeringa S. G., Plassman B. L., et al. (2011). National estimates of the prevalence of Alzheimer's disease in the United States. Alzheimer Dement. 7, 61–73 10.1016/j.jalz.2010.11.007
    1. Buitenweg J. I. V., Murre J. M. J., Ridderinkhof K. R. (2012). Brain training in progress: a review of trainability in healthy seniors. Front. Hum. Neurosci. 6:183 10.3389/fnhum.2012.00183
    1. Cacciopo J. T., Hughes M. E., Waite L. J., Hawkley L. C., Thisted R. A. (2006). Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. Psychol. Aging 21, 140–151 10.1037/0882-7974.21.1.140
    1. Cain M. S., Landau A. N., Shimamura A. P. (2012). Action video game experience reduces the cost of switching tasks. Atten. Percept. Psychophys. 74, 641–647 10.3758/s13414-012-0284-1
    1. Cassavaugh N. D., Kramer A. F. (2009). Transfer of computer based training to simulated driving in older adults. Appl. Ergon. 40, 943–952 10.1016/j.apergo.2009.02.001
    1. Chen C., Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20, 157–184 10.1146/annurev.neuro.20.1.157
    1. Chisholm J. D., Kingstone A. (2012). Improved top-down control reduces oculomotor capture: the case of action video game players. Atten. Percept. Psychophys. 74, 257–262 10.3758/s13414-011-0253-0
    1. Clark J. E., Lamphear A. K., Riddick C. C. (1987). The effects of videogame playing on the response selection processing of elderly adults. J. Gerontol. 42, 82–85
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N., et al. (2004). Cardio-vascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101, 3316–3321 10.1073/pnas.040026610
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults A meta-analytic study. Psychol. Sci. 14, 125–130 10.1111/1467-9280.t01-1-01430
    1. Colzato L. S., Van Leeuwen P. J. A., Van Den Wildenberg W. P. M., Hommel B. (2010). DOOM'd Switch: superior cognitive flexibility in players of first person shooter games. Front. Psychol. 1:8 10.3389/fpsyg.2010.00008
    1. Craik F. I. M., Bialystok E. (2006). Cognition through the lifespan: mechanisms of change. Trends Cogn. Sci. 10, 131–139 10.1016/j.tics.2006.01.007
    1. Craik F. I. M., Winocur G., Palmer H., Binns M. A., Edwards M., Bridges K., et al. (2007). Cognitive rehabilitation in the elderly: effects on memory. J. Int. Neuropsych. Soc. 13, 132–142 10.1016/j.tics.2006.01.007
    1. Dahlin E., Nyberg L., Bäckman L., Neely A. S. (2008). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psycholog. Aging 23, 720–730 10.1037/a0014296
    1. Drew D., Waters J. (1986). Video games: utilization of a novel strategy to improve perceptual motor skills and cognitive functioning in the non-institutionalized elderly. Cogn. Rehabil. 4, 26–31
    1. Eckert M. A. (2011). Slowing down: age-related neurobiological predictors of processing speed. Front. Neurosci. 5:25 10.3389/fnins.2011.00025
    1. Edwards J. D., Wadley V. G., Vance D. E., Wood K., Roenker D. L., Ball K. K. (2005). The impact of speed of processing training on cognitive and everyday performance. Aging Ment. Health 9, 262–271 10.1080/13607860412331336788
    1. Erickson K. I., Colcombe S. J., Wadhwa R., Bherer L., Peterson M. S., Scalf P. E., et al. (2007). Training- induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–283 10.1016/j.neurobiolaging.2005.12.012
    1. Feng J., Spence I., Pratt J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 18, 850–855 10.1111/j.1467-9280.2007.01990.x
    1. Ferri C. P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., et al. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117 10.1016/S0140-6736(05)67889-0
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiat. Res. 12, 189–1998
    1. Green C. S., Bavelier D. (2003). Action video game modifies visual selective attention. Nature 423, 534–537 10.1038/nature01647
    1. Green C. S., Bavelier D. (2006). Effects of action video game playing on the spatial distribution of visual selective attention. J. Exp. Psychol. Hum. 32, 1465–1478 10.1037/0096-1523.32.6.1465
    1. Green C. S., Li R., Bavelier D. (2010). Perceptual learning during action video game playing. Top. Cogn. Sci. 2, 201–216 10.1111/j.1756-8765.2009.01054.x
    1. Gunning-Dixon F. M., Raz N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia 41, 1929–1941 10.1016/S0028-3932(03)00129-5
    1. Hampstead B. M., Shatian K., Phillips P. A., Amaraneni A., Delaune W. R., Stringer A. Y. (2012). Mnemonic strategy training improves memory for object location associations in both healthy elderly and patients with amnestic mild cognitive impairment: a randomized, single-blind study. Neuropsychology 26, 385–399 10.1037/a0027545
    1. Hasher L., Zacks R., May C. (1999). Inhibitory control, circadian arousal and age. Atten. Perform. 17, 653–677
    1. Heaton R. K. (1981). A Manual for the Wisconsin Card Sorting Test. Odessa, FL: Western Psychological Services
    1. Hedden T., Gabrieli J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96 10.1038/nrn1323
    1. Hertzog C., Kramer A. F., Wilson R. S., Lindenberger U. (2009). Enrichment effects on adult cognitive development. Psychol. Sci. Public Interest 9, 1–65 10.1111/j.1539-6053.2009.01034.x
    1. Holtmaat A., Svoboda K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 10.1038/nrn2699
    1. Hötting K., Röder B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37(9 Pt B), 2243–2257 10.1016/j.neubiorev.2013.04.005
    1. Hoyer W. J., Verhaeghen P. (2006). Memory aging, in Handbook of the psychology of Aging, eds Birren J., Schaie W. (Burlington, MA: Elsevier Academic Press; ), 209–232
    1. Jones S., Nyberg L., Sandblom J., Stigsdotter Neely A., Ingvar M., Petersson K. M., et al. (2006). Cognitive and neural plasticity in aging: general and task specific limitations. Neurosci. Biobehav. Rev. 30, 864–871 10.1016/j.neubiorev.2006.06.012
    1. Kempermann G., Gast D., Gage F. H. (2002). Neuroplasticity in old age: sustained five-fold induction of hippocampal neurogenesis by long-term environment enrichment. Ann. Neurol. 52, 135–143 10.1002/ana.10262
    1. Kempermann G., Wiskott L., Gage F. H. (2004). Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 14, 186–191 10.1016/j.conb.2004.03.001
    1. Knaepen K., Goekint M., Heyman E. M., Meeusen R. (2010). Neuroplasticity – Exercise-induced response to peripheral brain-derived neurotrophic factor. Sports Med. 40, 765–801 10.2165/11534530
    1. Kray J., Lindenberger U. (2000). Adult age differences in task switching. Psychol. Aging 15, 126 10.1037//0882-7974.15.1.126
    1. Kueider A. M., Parisi J. M., Gross A. L., Rebok G. W. (2012). Computerized cognitive training with older adults: a systematic review. PLoS ONE 7:e40588 10.1371/journal.pone.0040588
    1. Lee H., Boot W. R., Basack C., Voss M. W., Prakash R. S., Neider M., et al. (2012). Performance gains from directed training do not transfer to untrained tasks. Acta Psychol. 139, 146–158 10.1016/j.actpsy.2011.11.003
    1. Lee S.-C., Schmiedek F., Huxhold O., Röcke C., Smith J., Lindenberger U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23, 731–742 10.1037/a0014343
    1. Li S.-C., Brehmer Y., Shing Y. L., Werkle-Bergner M., Lindenberger U. (2006). Neuromodulation of associative and organizational plasticity across the life span: empirical evidence and neurocomputational modeling. Neurosci. Biobehav. Rev. 30, 775–790 10.1016/j.neubiorev.2006.06.004
    1. Lindenberger U., Li S.-C., Bäckman L. (2006). Methodological and conceptual advances in the study of brain-behavior dynamics: a multivariate lifespan perspective. Neurosci. Biobehav. Rev. 30, 713–717 10.1016/j.neubiorev.2006.06.006
    1. Lövdén M., Lindenberger U., Bäckman L., Schaefer S., Schmiedek F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–676 10.1037/a0020080
    1. Lustig C., Shah P., Seidler R., Reuter-Lorenz P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychol. Rev. 19, 504–522 10.1007/s11065-009-9119-9
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–12528 10.1073/pnas.0605194103
    1. Maillot P., Perrot A., Hartley A. (2012). Effects of interactive physical-activity videogame training on physical and cognitive function in older adults. Psychol. Aging 27, 289–600 10.1037/a0026268
    1. Martínez J., Onís M. C., Dueñas H., Aguado C., Colomer C., Luque R. (2002). The Spanish version of the Yesavage Abbreviated Questionnaire (GDS) to screen depressive dysfunctions in patients older than 65 years. Medifam 12, 620–630 10.4321/S1131-57682002001000003
    1. Mayas J., Parmentier F. B. R., Andrés P., Ballesteros S. (2014). Plasticity of attentional functions in older adults after non-action video game training. PLoS ONE 9:e92269 10.1371/journal.pone.0092269
    1. McDougall S., House B. (2012). Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects. Aging Neuropsychol. Cogn. 19, 195–221 10.1080/13825585.2011.640656
    1. McKay S. M., Maki B. E. (2010). Attitudes of older adults toward shooter games: an initial study to select an acceptable game for training visual processing. Gerontechnology 9, 5–17 10.4017/gt.2010.09.01.001.00
    1. Melby-Lervåg M., Hulme C. (2013). Is working memory training effective? A meta-analytic review. Dev. Psychol. 49, 270–291 10.1037/a0028228
    1. Milner B. (1963). Effects of different brain lesion on card sorting. Arch. Neurol. 9, 100–110
    1. Milner B. (1971). Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 27, 272–277 10.1001/archneur.1963.00460070100010
    1. Mitchell D. B., Bruss P. J. (2003). Age differences in implicit memory: conceptual, perceptual o methodological. Psychol. Aging 18, 807–822 10.1037/0882-7974.18.4.807
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wagner R. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 10.1006/cogp.1999.0734
    1. Mozolic J. L., Long A. B., Morgan A. R., Rawley-Payne M., Laurienti P. J. (2011). A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiol. Aging 32, 655–668 10.1016/j.neurobiolaging.2009.04.013
    1. Nap H. H., de Kort Y. A. W., Ijselsteijn W. A. (2009). Senior gamers: preferences, motivations and needs. Gerontechnology 8, 247–262 10.4017/gt.2009.08.04.003.00
    1. Nieboer A., Lindenberg S., Boomsma A., Bruggen A. C. V. (2005). Dimensions of wellbeing and their measurement: the SPF-IL scale. Soc. Indic. Res. 73, 313–353 10.1007/s11205-004-0988-2
    1. Nilsson L. G. (2003). Memory function in normal aging. Acta Neurol. Scand. 107, 7–13 10.1034/j.1600-0404.107.s179.5.x
    1. Nouchi R., Taki Y., Takeuchi H., Hashizume H., Akitsuki Y., Shigemune Y., et al. (2012). Brain training game improves executive functions and processing Speed in the elderly: a randomized controlled trial. PLoS ONE 7:e29676 10.1371/journal.pone.0029676
    1. Oei A. C., Petterson M. D. (2013). Enhancing cognition with video games: a multiple game training study. PLoS ONE 8:e58546 10.1371/journal.pone.0058546
    1. Osorio A., Pouthas V., Fay S., Ballesteros S. (2010). Ageing affects brain activity in highly educated older adults: an ERP study using a word-stem priming task. Cortex 46, 522–534 10.1016/j.cortex.2009.09.003
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., et al. (2010). Putting brain training to test. Nat. Lett. 465, 775–778 10.1038/nature09042
    1. Park D. C., Bischof G. N. (2013). The aging mind: neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 15, 109–119
    1. Park D. C., Davidson L., Lautenschlager G., Smith A. D., Smith P., Hedden T. (2002). Models of visuo-spatial and verbal memory across the adult lifespan. Psychol. Aging 17, 299–320 10.1037/0882-7974.17.2.299
    1. Park D. C., Gutchess A. H. (2002). Aging, cognition, and culture: a neuroscientific perspective. Neurosci. Biobehav. Rev. 26, 859–867 10.1016/S0149-7634(02)00072-6
    1. Park D. C., Reuter-Lorenz P. A. (2009). The adaptive brain: ageing and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 10.1146/annurev.psych.59.103006.093656
    1. Pascual-Leone A., Amedi A., Fregni F., Merabet L. B. (2005). The plastic human brain cortex. Annu. Rev. Psychol. 28, 377–401 10.1146/annurev.neuro.27.070203.144216
    1. Peter C., Kreisner A., Schröter M., Hyosun K., Bieber G., Öhberg F., Ballesteros S. (2013). AGNES: connecting people in a multimodal way. J. Multimod. User Interf. 7, 229–245 10.1007/s12193-013-0118-z
    1. Powers K. L., Brooks P. J., Aldrich N. J., Palladino M., Alfieri L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon. Bull. Rev. 20, 1055–1079 10.3758/s13423-013-0418-z
    1. Raz N. (2000). Aging of the brain and its impact on cognitive performance: integration of structural and functional findings, in The Handbook of Aging and Cognition, eds Craik F. I. M., Salthouse T. A. (Mahwah, NJ: Lawrence Erlbaum Associates; ), 1–90
    1. Raz N., Lindenberger U., Rodrigue K. M., Kennedy K. M., Head D., Williamson A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 10.1093/cercor/bhi044
    1. Reddick T. S., Shipstead Z., Fried D. E., Hambrick D. Z., Kane M. J., Engle R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142, 359–379 10.1037/a0029082
    1. Reitz C., Brayne C., Mayeux R. (2011). Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137–152 10.1038/nrneurol.2011.2
    1. Rey A. (1942). L‘examen psychologique dans les cas d‘encéfalopathie traumatique. Arch. Psychol. 28, 286–340
    1. Rey A. (1999). Test de Copia y de Reproducción de Memoria de una Figura Geométrica Compleja (Manual). Madrid: TEA Ediciones
    1. Richardson J. T. E., Vecchi T. (2002). A jigsaw-puzzle imagery task for assessing active visuospatial processes in old and young people. Behav. Res. Meth. Ins. Cogn. 34, 69–82 10.3758/BF03195425
    1. Rönnlund M., Nyberg L., Bäckman L., Nilsson L.-G. (2005). Stability, growth and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol. Aging 20, 3–18 10.1037/0882-7974.20.1.3
    1. Salthouse T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 10.1037//0033-295X.103.3.403
    1. Salthouse T. A., Ferrer-Caja E. (2003). What needs to be explained to account for age-related effects on multiple cognitive variables? Psychol. Aging 18, 91–110 10.1037/0882-7974.18.1.91
    1. Sebastián M., Ballesteros S. (2012). Effects of normal aging on event-related potentials and oscillatory brain activity during a haptic repetition priming task. Neuroimage 60, 7–20 10.1016/j.neuroimage.2011.11.060
    1. Shipstead Z., Redick T. S., Engle R. W. (2012). Is working memory training effective? Psychol. Bull. 138, 628–654 10.1037/a0027473
    1. Smith G. E., Housen P., Yaffe K., Ruff R., Kennison R. F., Mahncke H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity−based adaptive cognitive training (IMPACT) study. J. Am. Geriatr. Soc. 57, 594–603 10.1111/j.1532-5415.2008.02167.x
    1. Snodgrass J. G., Vanderwart M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity and visual complexity. J. Exp. Psychol. Hum. Learn. 6, 174–215 10.1037//0278-7393.6.2.174
    1. Squire L. R., Stark C. E., Clark R. E. (2004). The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 10.1146/annurev.neuro.27.070203.144130
    1. Stemberg D. A., Ballard K., Hardy J. L., Katz B., Doraiswamy P. M., Scanlon M. (2013). The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Front. Hum. Neurosci. 7:292 10.3389/fnhum.2013.00292
    1. Thompson G., Foth F. (2005). Cognitive-training programs for older adults: what are they and can they enhance mental fitness? Educ. Gerontol. 31, 603–626 10.1080/03601270591003364
    1. Toril P., Reales J. M., Ballesteros S. (2014). Video game training enhances cognition of older adults? A meta-analytic study. Psychol. Aging 29, 706–716 10.1037/a0037507
    1. Valenzuela M., Sachdev P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am. J. Geriat. Psychiat. 17, 179–187 10.1097/JGP.0b013e3181953b57
    1. Waterworth J. A., Ballesteros S., Peter C. (2009). User-sensitive home-based systems for successful ageing, in Human System Interactions (HSI'09) (Catania: IEEE Computer Society; ), 542–545 10.1109/HSI.2009.5091036
    1. Wechsler D. (1997). Wechsler Memory Scale (WMS-III). San Antonio, TX: Psychological Corporation and Harcourt Brace
    1. Wechsler D. (1999). WAIS-III: Wechsler Adult Intelligence Scale, Administration and Scoring Manual, 3rd Edn. San Antonio, TX: Psychological Corporation and Harcourt Brace
    1. Wechsler D., Pereña J. (2004). WMS-III: Escala de Memoria de Wechsler-III. Madrid: Tea
    1. West R. (1996). An application of the prefrontal cortex function theory to cognitive aging. Psychol. Bull. 120, 272–292
    1. Wiggs C. L., Weisberg J., Martin A. (2006). Repetition priming across the adult lifespan—the long and short of it. Aging Neuropsychol. Cogn. 13, 308–325 10.1080/138255890968718
    1. Willis S. L., Tennstedt S. L., Marsiske M., Ball K., Elias J., Koepke K. M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA 296, 2805–2814 10.1001/jama.296.23.2805
    1. Wolinsky F. D., Vander Weg M. W., Howren M. B., Jonas M. P., Dotson M. D. (2013). A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PLoS ONE 8:e61624 10.137/journal.pone.0061624
    1. Yesavage J. A., Brink T. L., Rose T. L., Lum O., Huang V., Adey M., et al. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiat. Res. 17, 37–49
    1. Zimprich D. M. (2002). Can longitudinal change in processing speed explain longitudinal changes in fluid intelligence? Psychol. Aging 17, 690–695 10.1037//0882-7974.17.4.690

Source: PubMed

3
S'abonner