Intestinal decolonization of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBL): a retrospective observational study in patients at risk for infection and a brief review of the literature

Siegbert Rieg, M Fabian Küpper, Katja de With, Annerose Serr, Jürgen A Bohnert, Winfried V Kern, Siegbert Rieg, M Fabian Küpper, Katja de With, Annerose Serr, Jürgen A Bohnert, Winfried V Kern

Abstract

Background: Multidrug-resistant Escherichia coli and other enteric bacteria producing extended-spectrum β-lactamases (ESBL) have emerged as an important cause of invasive infection. Targeting the primary (intestinal) niche by decolonization may be a valuable approach to decrease the risk of relapsing infections and to reduce transmission of ESBL-producing enteric pathogens.

Methods: In a retrospective observational study we evaluated the efficacy of intestinal decolonization treatment using orally administered colistin or other non-absorbable agents given for 2 to 4 weeks in adult patients with previous relapsing infection and persistent intestinal colonization with ESBL-positive Enterobacteriaceae (ESBL-E). Eradication success was defined as negative rectal swab or stool culture at the end of treatment and at follow up-2 weeks after treatment discontinuation.

Results: First-line decolonization treatment led to eradication of ESBL-E in 19/45 patients (42%, 7/18 low-dose [4 × 1 million units] colistin, 3/12 high-dose [4 × 2 million units] colistin, 9/15 rifaximin [2 × 400 mg]), and secondary/salvage treatment was successful in 8/13 patients (62 %, 20 treatment episodes). Late follow-up showed that 7/13 patients (54%) with successful initial or salvage decolonization became recolonized within 3 months after post-treatment assessment while all eight of the patients failing initial or salvage decolonization treatment with late follow-up remained colonized. A narrative review of the literature confirms the limited efficacy of non-absorbable antibiotics including conventional selective digestive tract decolonization (SDD)-like combination regimens for eradicating multidrug-resistant enteric bacteria from the intestinal tract.

Conclusions: At present, there is no clear evidence of a significant decolonization efficacy using single-drug treatment with oral non-absorbable antibiotics. More effective regimens are needed and a better definition of at risk patients is required for planning meaningful randomized controlled studies in this field.

Figures

Fig. 1
Fig. 1
Flow diagram of literature search. ESBL-E extended-spectrum β-lactamase-producing Enterobacteriaceae, CR-E carbapenem-resistent Enterobacteriaceae, SDD selective digestive tract decolonization

References

    1. Peirano G, Pitout JD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35:316–321. doi: 10.1016/j.ijantimicag.2009.11.003.
    1. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–166. doi: 10.1016/S1473-3099(08)70041-0.
    1. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:2793–2803. doi: 10.1093/jac/dks301.
    1. Rodriguez-Bano J, Pascual A. Clinical significance of extended-spectrum beta-lactamases. Expert Rev Anti Infect Ther. 2008;6:671–683. doi: 10.1586/14787210.6.5.671.
    1. Zimmerman FS, Assous MV, Bdolah-Abram T, Lachish T, Yinnon AM, Wiener-Well Y. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control. 2013;41:190–194. doi: 10.1016/j.ajic.2012.09.020.
    1. de Smet AM, Kluytmans JA, Cooper BS, Mascini EM, Benus RF, van der Werf TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20–31. doi: 10.1056/NEJMoa0800394.
    1. Rivkin A, Gim S. Rifaximin: new therapeutic indication and future directions. Clin Ther. 2011;33:812–827. doi: 10.1016/j.clinthera.2011.06.007.
    1. Huttner B, Haustein T, Uckay I, Renzi G, Stewardson A, Schaerrer D, et al. Decolonization of intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J Antimicrob Chemother. 2013;68:2375–2382.
    1. Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33:14–19. doi: 10.1086/663206.
    1. Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Hussein K, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: A prospective controlled trial. Am J Infect Control. 2013;41:1167–1172. doi: 10.1016/j.ajic.2013.04.018.
    1. Buehlmann M, Bruderer T, Frei R, Widmer AF. Effectiveness of a new decolonisation regimen for eradication of extended-spectrum beta-lactamase-producing Enterobacteriaceae. J Hosp Infect. 2011;77:113–117. doi: 10.1016/j.jhin.2010.09.022.
    1. Lubbert C, Faucheux S, Becker-Rux D, Laudi S, Durrbeck A, Busch T, et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents. 2013;42:565–570. doi: 10.1016/j.ijantimicag.2013.08.008.
    1. Oostdijk EA, de Smet AM, Kesecioglu J, Bonten MJ. Decontamination of cephalosporin-resistant Enterobacteriaceae during selective digestive tract decontamination in intensive care units. J Antimicrob Chemother. 2012;67:2250–2253. doi: 10.1093/jac/dks187.
    1. Abecasis F, Sarginson RE, Kerr S, Taylor N, van Saene HK. Is selective digestive decontamination useful in controlling aerobic gram-negative bacilli producing extended spectrum beta-lactamases? Microb Drug Resist. 2011;17:17–23. doi: 10.1089/mdr.2010.0060.
    1. Troche G, Joly LM, Guibert M, Zazzo JF. Detection and treatment of antibiotic-resistant bacterial carriage in a surgical intensive care unit: a 6-year prospective survey. Infect Control Hosp Epidemiol. 2005;26:161–165. doi: 10.1086/502521.
    1. Nitschke M, Sayk F, Hartel C, Roseland RT, Hauswaldt S, Steinhoff J, et al. Association between azithromycin therapy and duration of bacterial shedding among patients with Shiga toxin-producing enteroaggregative Escherichia coli O104:H4. JAMA. 2012;307:1046–1052. doi: 10.1001/jama.2012.264.
    1. Paterson DL, Singh N, Rihs JD, Squier C, Rihs BL, Muder RR. Control of an outbreak of infection due to extended-spectrum beta-lactamase--producing Escherichia coli in a liver transplantation unit. Clin Infect Dis. 2001;33:126–128. doi: 10.1086/320882.
    1. Oteo J, Perez-Vazquez M, Campos J. Extended-spectrum [beta]-lactamase producing Escherichia coli: changing epidemiology and clinical impact. Curr Opin Infect Dis. 2010;23:320–326. doi: 10.1097/QCO.0b013e3283398dc1.
    1. Doi Y, Adams-Haduch JM, Peleg AY, D’Agata EM. The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting. Diagn Microbiol Infect Dis. 2012;74:34–38. doi: 10.1016/j.diagmicrobio.2012.05.020.
    1. Kennedy K, Collignon P. Colonisation with Escherichia coli resistant to “critically important” antibiotics: a high risk for international travellers. Eur J Clin Microbiol Infect Dis. 2010;29:1501–1506. doi: 10.1007/s10096-010-1031-y.
    1. Birgand G, Armand-Lefevre L, Lolom I, Ruppe E, Andremont A, Lucet JC. Duration of colonization by extended-spectrum beta-lactamase-producing Enterobacteriaceae after hospital discharge. Am J Infect Control. 2013;41:443–447. doi: 10.1016/j.ajic.2012.05.015.
    1. Schechner V, Kotlovsky T, Tarabeia J, Kazma M, Schwartz D, Navon-Venezia S, et al. Predictors of rectal carriage of carbapenem-resistant Enterobacteriaceae (CRE) among patients with known CRE carriage at their next hospital encounter. Infect Control Hosp Epidemiol. 2011;32:497–503. doi: 10.1086/659762.
    1. Titelman E, Hasan CM, Iversen A, Naucler P, Kais M, Kalin M, et al. Faecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors. Clin Microbiol Infect. 2014;20:O508–O515. doi: 10.1111/1469-0691.12559.
    1. Jiang ZD, Ke S, Palazzini E, Riopel L, Dupont H. In vitro activity and fecal concentration of rifaximin after oral administration. Antimicrob Agents Chemother. 2000;44:2205–2206. doi: 10.1128/AAC.44.8.2205-2206.2000.
    1. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S. Current trends in culture-based and molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2012;50:1140–1146. doi: 10.1128/JCM.06852-11.
    1. Overdevest IT, Willemsen I, Elberts S, Verhulst C, Kluytmans JA. Laboratory detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae: evaluation of two screening agar plates and two confirmation techniques. J Clin Microbiol. 2011;49:519–522. doi: 10.1128/JCM.01953-10.
    1. Stoesser N, Sheppard AE, Moore CE, Golubchik T, Parry CM, Nget P, et al. Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses. J Clin Microbiol. 2015;53:2122–2131. doi: 10.1128/JCM.00378-15.

Source: PubMed

3
S'abonner