Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis

Api Chewcharat, Narut Prasitlumkum, Charat Thongprayoon, Tarun Bathini, Juan Medaura, Saraschandra Vallabhajosyula, Wisit Cheungpasitporn, Api Chewcharat, Narut Prasitlumkum, Charat Thongprayoon, Tarun Bathini, Juan Medaura, Saraschandra Vallabhajosyula, Wisit Cheungpasitporn

Abstract

Background: The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients.

Methods: We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model.

Results: Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = -0.56% [95%CI: -0.97, -0.16]; p = 0.007) and body weight (WMD = -2.16 kg [95%CI: -3.08, -1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment.

Conclusion: Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.

Keywords: SGLT-2 inhibitors; kidney transplant; meta-analysis; renal transplant; transplantation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram for study selection.
Figure 2
Figure 2
Plot displaying the pooled weighted mean difference of estimated glomerular filtration rate (eGFR), comparing levels at baseline and end of study.
Figure 3
Figure 3
Forest plot displaying the pooled weighted mean difference of glycated hemoglobin (HbA1C), comparing levels at baseline and end of study.
Figure 4
Figure 4
Assessment for publication bias by Funnel plot and Egger test.

References

    1. Koye D.N., Magliano D.J., Nelson R.G., Pavkov M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic Kidney Dis. 2018;25:121–132. doi: 10.1053/j.ackd.2017.10.011.
    1. Hart A., Smith J.M., Skeans M.A., Gustafson S.K., Wilk A.R., Robinson A., Wainright J.L., Haynes C.R., Snyder J.J., Kasiske B.L., et al. OPTN/SRTR 2016 Annual Data Report: Kidney. Arab. Archaeol. Epigr. 2018;18:18–113. doi: 10.1111/ajt.14557.
    1. Cosio F.G., Pesavento T.E., Kim S., Osei K., Henry M., Ferguson R.M. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002;62:1440–1446. doi: 10.1111/j.1523-1755.2002.kid582.x.
    1. Kasiske B.L., Snyder J.J., Gilbertson D., Matas A.J. Diabetes Mellitus after Kidney Transplantation in the United States. Arab. Archaeol. Epigr. 2003;3:178–185. doi: 10.1034/j.1600-6143.2003.00010.x.
    1. Woodward R.S., Schnitzler M.A., Baty J.D., Lowell J.A., Lopez-Rocafort L., Haider S., Woodworth T.G., Brennan D.C. Incidence and Cost of New Onset Diabetes Mellitus Among U.S. Wait-Listed and Transplanted Renal Allograft Recipients. Arab. Archaeol. Epigr. 2003;3:590–598. doi: 10.1034/j.1600-6143.2003.00082.x.
    1. Shivaswamy V., Boerner B., Larsen J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr. Rev. 2016;37:37–61. doi: 10.1210/er.2015-1084.
    1. Paek J.H., Kang S.S., Park W.Y., Jin K., Park S.B., Han S., Kim C.-D., Ro H., Lee S., Jung C.W., et al. Incidence of Post-transplantation Diabetes Mellitus Within 1 Year After Kidney Transplantation and Related Factors in Korean Cohort Study. Transplant. Proc. 2019;51:2714–2717. doi: 10.1016/j.transproceed.2019.02.054.
    1. Eide I.A., Halden T.A.S., Hartmann A., Dahle D.O., Åsberg A., Jenssen T. Associations Between Posttransplantation Diabetes Mellitus and Renal Graft Survival. Transplantation. 2017;101:1282–1289. doi: 10.1097/TP.0000000000001259.
    1. Dienemann T., Fujii N., Li Y., Govani S., Kosaraju N., Bloom R.D., Feldman H.I. Long-term patient survival and kidney allograft survival in post-transplant diabetes mellitus: A single-center retrospective study. Transpl. Int. 2016;29:1017–1028. doi: 10.1111/tri.12807.
    1. Cooper L., Oz N., Fishman G., Shohat T., Rahamimov R., Mor E., Green H., Grossman A. New onset diabetes after kidney transplantation is associated with increased mortality-A retrospective cohort study. Diabetes/Metab. Res. Rev. 2017;33:e2920. doi: 10.1002/dmrr.2920.
    1. Kuo H.-T., Sampaio M.S., Vincenti F., Bunnapradist S. Associations of Pretransplant Diabetes Mellitus, New-Onset Diabetes After Transplant, and Acute Rejection with Transplant Outcomes: An Analysis of the Organ Procurement and Transplant Network/United Network for Organ Sharing (OPTN/UNOS) Database. Am. J. Kidney Dis. 2010;56:1127–1139. doi: 10.1053/j.ajkd.2010.06.027.
    1. Valderhaug T.G., Hjelmesæth J., Hartmann A., Røislien J., Bergrem H.A., Leivestad T., Line P.D., Jenssen T. The association of early post-transplant glucose levels with long-term mortality. Diabetologia. 2011;54:1341–1349. doi: 10.1007/s00125-011-2105-9.
    1. Galindo R.J., Fried M., Breen T., Tamler R. HYPERGLYCEMIA MANAGEMENT IN PATIENTS WITH POSTTRANSPLANTATION DIABETES. Endocr. Pract. 2016;22:454–465. doi: 10.4158/EP151039.RA.
    1. Lo C., Jun M., Badve S.V., Pilmore H., White S.L., Hawley C., Cass A., Perkovic V., Zoungas S. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 2017 doi: 10.1002/14651858.CD009966.pub2.
    1. Heerspink H.J.L. Sodium glucose co-transporter 2 inhibition: A new avenue to protect the kidney. Nephrol. Dial. Transplant. 2019;34:2015–2017. doi: 10.1093/ndt/gfz033.
    1. Musso G., Gambino R., Cassader M., Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: Sodium glucose co-transport (SGLT) inhibitors. Systematic review and meta-analysis of randomized trials. Ann. Med. 2011;44:375–393. doi: 10.3109/07853890.2011.560181.
    1. Clar C., Gill J.A., Court R., Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2:e001007. doi: 10.1136/bmjopen-2012-001007.
    1. Daniele G., Solis-Herrera C., Dardano A., Mari A., Tura A., Giusti L., Kurumthodathu J.J., Campi B., Saba A., Bianchi A.M., et al. Increase in endogenous glucose production with SGLT2 inhibition is attenuated in individuals who underwent kidney transplantation and bilateral native nephrectomy. Diabetologia. 2020;63:2423–2433. doi: 10.1007/s00125-020-05254-w.
    1. Chao E.C., Henry R.R. SGLT2 inhibition—A novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 2010;9:551–559. doi: 10.1038/nrd3180.
    1. Nauck M.A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des. Dev. Ther. 2014;8:1335–1380. doi: 10.2147/DDDT.S50773.
    1. Anderson S., Cotiguala L., Tischer S., Park J.M., McMurry K. Review of Newer Antidiabetic Agents for Diabetes Management in Kidney Transplant Recipients. Ann. Pharmacother. 2020:1060028020951955. doi: 10.1177/1060028020951955.
    1. Kanduri S.R., Kovvuru K., Hansrivijit P., Thongprayoon C., Vallabhajosyula S., Pivovarova A.I., Chewcharat A., Garla V.V., Medaura J., Cheungpasitporn W. SGLT2 Inhibitors and Kidney Outcomes in Patients with Chronic Kidney Disease. J. Clin. Med. 2020;9:2723. doi: 10.3390/jcm9092723.
    1. Song C.C., Brown A., Winstead R., Yakubu I., Demehin M., Kumar D., Gupta G. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol. Diabetes Metab. 2020:e00185. doi: 10.1002/edm2.185.
    1. Zelniker T.A., Wiviott S.D., Raz I., Im K., Goodrich E.L., Bonaca M.P., Mosenzon O., Kato E.T., Cahn A., Furtado R.H.M., et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–39. doi: 10.1016/S0140-6736(18)32590-X.
    1. Liu X.-Y., Zhang N., Chen R., Zhao J.-G., Yu P. Efficacy and safety of sodium–glucose cotransporter 2 inhibitors in type 2 diabetes: A meta-analysis of randomized controlled trials for 1 to 2 years. J. Diabetes Complicat. 2015;29:1295–1303. doi: 10.1016/j.jdiacomp.2015.07.011.
    1. Vergara A., Jacobs-Cachá C., Soler M.J. Sodium-glucose cotransporter inhibitors: Beyond glycaemic control. Clin. Kidney J. 2019;12:322–325. doi: 10.1093/ckj/sfz019.
    1. Nadkarni G.N., Ferrandino R., Chang A., Surapaneni A., Chauhan K., Poojary P., Saha A., Ferket B., Grams M.E., Coca S.G. Acute Kidney Injury in Patients on SGLT2 Inhibitors: A Propensity-Matched Analysis. Diabetes Care. 2017;40:1479–1485. doi: 10.2337/dc17-1011.
    1. Watts N.B., Bilezikian J.P., Usiskin K., Edwards R., Desai M., Law G., Meininger G. Effects of Canagliflozin on Fracture Risk in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2016;101:157–166. doi: 10.1210/jc.2015-3167.
    1. Peters A., Buschur E.O., Buse J.B., Cohan P., Diner J.C., Hirsch I.B. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment with Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care. 2015;38:1687–1693. doi: 10.2337/dc15-0843.
    1. Chang H.-Y., Singh S., Mansour O., Baksh S., Alexander G.C. Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients with Type 2 Diabetes. JAMA Intern. Med. 2018;178:1190–1198. doi: 10.1001/jamainternmed.2018.3034.
    1. Neal B., Perkovic V., Mahaffey K.W., De Zeeuw D., Fulcher G., Erondu N., Shaw W., Law G., Desai M., Matthews D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925.
    1. Perkovic V., De Zeeuw D., Mahaffey K.W., Fulcher G., Erondu N., Shaw W., Barrett T.D., Weidner-Wells M., Deng H., Matthews D.R., et al. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704. doi: 10.1016/S2213-8587(18)30141-4.
    1. Yale J., Bakris G., Cariou B., Nieto J., David-Neto E., Yue D., Wajs E., Figueroa K., Jiang J., Law G., et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes. Metab. 2014;16:1016–1027. doi: 10.1111/dom.12348.
    1. Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J., Charytan D.M., Edwards R., Agarwal R., Bakris G., Bull S., et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744.
    1. Kohan D.E., Fioretto P., Tang W., List J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–971. doi: 10.1038/ki.2013.356.
    1. Fioretto P., Del Prato S., Buse J.B., Goldenberg R., Giorgino F., Reyner D., Langkilde A.M., Sjöström C.D., Sartipy P., on behalf of the DERIVE Study Investigators Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes. Metab. 2018;20:2532–2540. doi: 10.1111/dom.13413.
    1. Wiviott S.D., Raz I., Bonaca M.P., Mosenzon O., Kato E.T., Cahn A., Silverman M.G., Zelniker T.A., Kuder J.F., Murphy S.A., et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019;380:347–357. doi: 10.1056/NEJMoa1812389.
    1. Martinez F.A., Serenelli M., Nicolau J.C., Petrie M.C., Chiang C.-E., Tereshchenko S., Solomon S.D., Inzucchi S.E., Køber L., Kosiborod M.N., et al. Efficacy and Safety of Dapagliflozin in Heart Failure with Reduced Ejection Fraction According to Age. Circulation. 2020;141:100–111. doi: 10.1161/CIRCULATIONAHA.119.044133.
    1. Cherney D.Z.I., Dekkers C.C.J., Barbour S.J., Cattran D., Gafor A.H.A., Greasley P.J., Laverman G.D., Lim S.K., Di Tanna G.L., Reich H.N., et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8:582–593. doi: 10.1016/S2213-8587(20)30162-5.
    1. Zinman B., Wanner C., Lachin J.M., Fitchett D.H., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Häring H.-U., Merker L., Seewaldt-Becker E., Weimer M., Meinicke T., Woerle H.J., Broedl U.C., on behalf of the EMPA-REG METSU Trial Investigators Empagliflozin as Add-on to Metformin Plus Sulfonylurea in Patients with Type 2 Diabetes: A 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36:3396–3404. doi: 10.2337/dc12-2673.
    1. Barnett A.H., Mithal A., Manassie J., Jones R., Rattunde H., Woerle H.J., Broedl U.C. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–384. doi: 10.1016/S2213-8587(13)70208-0.
    1. Halden T.A.S., Kvitne K.E., Midtvedt K., Rajakumar L., Robertsen I., Brox J., Bollerslev J., Hartmann A., Åsberg A., Jenssen T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care. 2019;42:1067–1074. doi: 10.2337/dc19-0093.
    1. Allegretti A.S., Zhang W., Zhou W., Thurber T.K., Rigby S.P., Bowman-Stroud C., Trescoli C., Serusclat P., Freeman M.W., Halvorsen Y.-D.C. Safety and Effectiveness of Bexagliflozin in Patients with Type 2 Diabetes Mellitus and Stage 3a/3b CKD. Am. J. Kidney Dis. 2019;74:328–337. doi: 10.1053/j.ajkd.2019.03.417.
    1. Wheeler D.C., Stefansson B.V., Batiushin M., Bilchenko O., Cherney D.Z.I., Chertow G.M., Douthat W., Dwyer J.P., Escudero E., Pecoits-Filho R., et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: Baseline characteristics. Nephrol. Dial. Transplant. 2020;35:1700–1711. doi: 10.1093/ndt/gfaa234.
    1. Lo C., Toyama T., Oshima M., Jun M., Chin K.L., Hawley C.M., Zoungas S. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 2020 doi: 10.1002/14651858.CD009966.pub2.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. National Heart Lung and Blood Institute Study Quality Assessment Tools. [(accessed on 14 December)]; Available online: .
    1. Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. Rajasekeran H., Kim J.S., Cardella C.J., Schiff J., Cattral M., Cherney D.Z., Singh S.K. Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. Diabetes Care. 2017;40:e75–e76. doi: 10.2337/dc17-0237.
    1. Schwaiger E., Burghart L., Signorini L., Ristl R., Kopecky C., Tura A., Pacini G., Wrba T., Antlanger M., Schmaldienst S., et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Arab. Archaeol. Epigr. 2019;19:907–919. doi: 10.1111/ajt.15223.
    1. Alkindi F., Al-Omary H.L., Hussain Q., Al Hakim M., Chaaban A., Boobes Y. Outcomes of SGLT2 Inhibitors Use in Diabetic Renal Transplant Patients. Transplant. Proc. 2020;52:175–178. doi: 10.1016/j.transproceed.2019.11.007.
    1. Attallah N., Yassine L. Use of Empagliflozin in Recipients of Kidney Transplant: A Report of 8 Cases. Transplant. Proc. 2019;51:3275–3280. doi: 10.1016/j.transproceed.2019.05.023.
    1. Mahling M., Schork A., Nadalin S., Fritsche A., Heyne N., Guthoff M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019;44:984–992. doi: 10.1159/000501854.
    1. Shah M., Virani Z., Rajput P., Shah B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian J. Nephrol. 2019;29:278–281. doi: 10.4103/ijn.IJN_2_18.
    1. Kong J., Joon J., Chul Y., Eun W., Hyuk K., Hyun S.S. SP770SODIUM/GLUCOSE COTRANSPORTER 2 INHIBOTOR FOR THE TREATMENT OF DIABETES IN KIDNEY TRANSPLANT PATIENTS. Nephrol. Dial. Transplant. 2019;34 doi: 10.1093/ndt/gfz103.SP770.
    1. Toyama T., Neuen B.L., Jun M., Ohkuma T., Neal B., Jardine M.J., Heerspink H.L., Wong M.G., Ninomiya T., Wada T., et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes. Metab. 2019;21:1237–1250. doi: 10.1111/dom.13648.
    1. Foote C., Perkovic V., Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diabetes Vasc. Dis. Res. 2012;9:117–123. doi: 10.1177/1479164112441190.
    1. Ceriello A., Ofstad A.P., Zwiener I., Kaspers S., George J., Nicolucci A. Empagliflozin reduced long-term HbA1c variability and cardiovascular death: Insights from the EMPA-REG OUTCOME trial. Cardiovasc. Diabetol. 2020;19:176. doi: 10.1186/s12933-020-01147-9.
    1. Sahebkar A., Atkin S.L., Sahebkar A. Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019;13:1679–1683. doi: 10.1016/j.dsx.2019.03.031.
    1. Weir M.R., Burgess E.D., Cooper J.E., Fenves A.Z., Goldsmith D., McKay D., Mehrotra A., Mitsnefes M.M., Sica D.A., Taler S.J. Assessment and Management of Hypertension in Transplant Patients. J. Am. Soc. Nephrol. 2015;26:1248–1260. doi: 10.1681/ASN.2014080834.
    1. Heerspink H.J.L., Perco P., Mulder S., Leierer J., Hansen M.K., Heinzel A., Mayer G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62:1154–1166. doi: 10.1007/s00125-019-4859-4.
    1. Hattori S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol. Metab. Syndr. 2018;10:1–7. doi: 10.1186/s13098-018-0395-5.
    1. Sahebkar A., Simental-Mendía L.E., Banach M., Bo S., Sahebkar A. The major molecular mechanisms mediating the renoprotective effects of SGLT2 inhibitors: An update. Biomed. Pharmacother. 2019;120:109526. doi: 10.1016/j.biopha.2019.109526.
    1. Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care. 2020;43:508–511. doi: 10.2337/dci19-0074.
    1. Iannantuoni F., De Marañon A.M., Diaz-Morales N., Falcon R., Bañuls C., Abad-Jiménez Z., Victor V.M., Hernández-Mijares A., Rovira-Llopis S. The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. J. Clin. Med. 2019;8:1814. doi: 10.3390/jcm8111814.
    1. Wu X., Dong Y., Liu Y., Li Y., Sun Y., Wang J., Wang S. The prevalence and predictive factors of urinary tract infection in patients undergoing renal transplantation: A meta-analysis. Am. J. Infect. Control. 2016;44:1261–1268. doi: 10.1016/j.ajic.2016.04.222.
    1. Liu J., Li L., Li S., Jia P., Deng K., Chen W., Sun X. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: A systematic review and meta-analysis. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-02733-w.
    1. Lee P.C., Ganguly S., Goh S.-Y. Weight loss associated with sodium-glucose cotransporter-2 inhibition: A review of evidence and underlying mechanisms. Obes. Rev. 2018;19:1630–1641. doi: 10.1111/obr.12755.
    1. Nespoux J., Vallon V. SGLT2 inhibition and kidney protection. Clin. Sci. 2018;132:1329–1339. doi: 10.1042/CS20171298.
    1. Phadke G., Kaushal A., Tolan D.R., Hahn K., Jensen T., Bjornstad P., Roncal-Jimenez C., Hernando A.A., Lanaspa M.A., Alexander M.P., et al. Osmotic Nephrosis and Acute Kidney Injury Associated with SGLT2 Inhibitor Use: A Case Report. Am. J. Kidney Dis. 2020;76:144–147. doi: 10.1053/j.ajkd.2020.01.015.
    1. Menne J., Dumann E., Haller H., Schmidt B.M.W. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med. 2019;16:e1002983. doi: 10.1371/journal.pmed.1002983.

Source: PubMed

3
S'abonner