Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients

Emmanuel Pardo, Hanen El Behi, Priscilla Boizeau, Franck Verdonk, Corinne Alberti, Thomas Lescot, Emmanuel Pardo, Hanen El Behi, Priscilla Boizeau, Franck Verdonk, Corinne Alberti, Thomas Lescot

Abstract

Background: Muscle wasting in critically ill patients is associated with negative clinical outcomes. Ultrasound quadriceps femoris muscle assessment may constitute a convenient tool to evaluate muscle wasting. Nevertheless, its reliability remains uncertain. Our primary aim was to study the intra- and inter-observer reliability of this technique. Our secondary aim was to assess the evolution of the quadriceps muscle during the first 3 weeks after ICU admission and its possible association with nutritional intake.

Methods: This observational study included patients expected to stay more than 7 days in the ICU. Ultrasound quadriceps muscle thickness was measured with a 12 MHz linear transducer, by two trained physicians, on D1, D3, D5, D7 and D21. Two measurements sites were evaluated: on the midpoint or on the two-thirds of the length between the anterior superior iliac spine and the upper border of the patella. Intra and inter-observer reliability was assessed by calculating the intra-class correlation coefficient (ICC).

Results: A total of 280 ultrasound quadriceps thickness measurements were performed on 29 critically ill patients. Intra-observer reliability's ICC was 0.74 [95% CI 0.63; 0.84] at the "midpoint" site and 0.83 [95% CI 0.75; 0.9] at the "two-thirds" site. Inter-observer reliability's ICC was 0.76 [95% CI, 0.66; 0.86] at the "midpoint" site and 0.81 [95% CI, 0.7; 0.9] at the "two-thirds" site. Quadriceps femoris muscle thickness decreased over 16% within the first week after ICU admission. No correlation was found between muscle loss and caloric (p = 0.96) or protein (p = 0.80) debt over the first week.

Conclusion: The assessment by ultrasonography of the quadriceps muscle thickness reveals good intra- and inter-observer reliability and may constitute a promising tool to evaluate the effect of nutritional-based interventions on muscle wasting in critically ill patients.

Trial registration: "Committee for the Protection of Human Subjects in Biomedical Research" - Paris Ile de France VI Pitié-Salpêtrière - 10/07/2014. French Data Protection Committee ("Commission Nationale Informatique et Libertés") - #1771144.

Keywords: Intensive care unit; Muscle wasting; Protein; Quadriceps muscle; Ultrasonography.

Conflict of interest statement

Ethics approval and consent to participate

The access to health information was approved by an ethics committee (“Committee for the Protection of Human Subjects in Biomedical Research” - Paris Ile de France VI Pitié-Salpêtrière – 10/07/2014) and by the French Data Protection Committee (“Commission Nationale Informatique et Libertés” - #1771144) who waived the need for individual consent according to the French law at the time of the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Ultrasound assessment of the quadriceps femoris muscle thickness. a Anatomical diagram locating the “midpoint” and the “two-thirds” measurement sites. From Wikimedia Commons. b Transverse ultrasound section made by linear probe at the midpoint site. RF: rectus femoris; VL: vastus lateralis; VM: vastus medialis; VI: vastus intermedius
Fig. 2
Fig. 2
Intra-observer and inter-observer reliability independently of laterality at the two measurement sites. Bland Altman representation with mean differences (green solid line) and 1.96SD limits (blue dashed lines)
Fig. 3
Fig. 3
Evolution of Quadriceps femoris muscle thickness between D1 and D21. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 (comparison with D1 assessment). Values are represented by medians and 95% confidence interval
Fig. 4
Fig. 4
Correlation between muscle loss and nutritional debt during the first week of ICU. a Muscle loss and caloric debt expressed in calories. b Muscle loss and protein debt. r: Spearman correlation coefficient

References

    1. Jolley SE, Bunnell AE, Hough CL. ICU-acquired weakness. Chest. 2016;150:1129–1140. doi: 10.1016/j.chest.2016.03.045.
    1. Rooyackers O, Kouchek-Zadeh R, Tjäder I, Norberg Å, Klaude M, Wernerman J. Whole body protein turnover in critically ill patients with multiple organ failure. Clin Nutr. 2015;34:95–100. doi: 10.1016/j.clnu.2014.01.020.
    1. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481.
    1. Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 2010;1:147–157. doi: 10.1007/s13539-010-0010-6.
    1. Weijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12. doi: 10.1186/cc13189.
    1. Looijaard WGPM, Molinger J, Weijs PJM. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24:241–247. doi: 10.1097/MCC.0000000000000511.
    1. Reid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr. 2004;23:273–280. doi: 10.1016/S0261-5614(03)00129-8.
    1. Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015;30:180–193. doi: 10.1177/0884533614568155.
    1. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr. 2002;76:378–383. doi: 10.1093/ajcn/76.2.378.
    1. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge M-P, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97:2333–2338. doi: 10.1152/japplphysiol.00744.2004.
    1. Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30:1151.e9–1151.14. doi: 10.1016/j.jcrc.2015.05.024.
    1. Puthucheary ZA, Phadke R, Rawal J, McPhail MJW, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–1611. doi: 10.1097/CCM.0000000000001016.
    1. Thomaes T, Thomis M, Onkelinx S, Coudyzer W, Cornelissen V, Vanhees L. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients. BMC Med Imaging. 2012;12:7. doi: 10.1186/1471-2342-12-7.
    1. Freilich RJ, Kirsner RL, Byrne E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul Disord. 1995;5:415–422. doi: 10.1016/0960-8966(94)00078-N.
    1. Zusman O, Singer P. Resting energy expenditure and optimal nutrition in critical care: how to guide our calorie prescriptions. Crit Care. 2017;21:128. doi: 10.1186/s13054-017-1717-y.
    1. Hadda V, Khilnani G, Kumar R, Dhunguna A, Mittal S, Khan M, et al. Intra- and inter-observer reliability of quadriceps muscle thickness measured with bedside ultrasonography by critical care physicians. Indian J Crit Care Med. 2017;21:448–410. doi: 10.4103/ijccm.IJCCM_426_16.
    1. Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. JPEN J Parenter Enteral Nutr. 2015;39:787–822. doi: 10.1177/0148607115595227.
    1. Vandenbroucke JP, Elm von E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med Public Libr Sci. 2007;4:e297. doi: 10.1371/journal.pmed.0040297.
    1. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutrss. 2014;38:886–890. doi: 10.1177/0148607113501327.
    1. Campbell IT, Watt T, Withers D, England R, Sukumar S, Keegan MA, et al. Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema. Am J Clin Nutr. 1995;62:533–539. doi: 10.1093/ajcn/62.3.533.
    1. Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19:274. doi: 10.1186/s13054-015-0993-7.
    1. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) JPEN J Parenter Enteral Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863.
    1. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer M, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2018.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Agyapong-Badu S, Warner M, Samuel D, Narici M, Cooper C, Stokes M. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health. Physiol Meas. 2014;35:2165–2176. doi: 10.1088/0967-3334/35/10/2165.
    1. Cho KH, Lee HJ, Lee WH. Intra- and inter-rater reliabilities of measurement of ultrasound imaging for muscle thickness and pennation angle of tibialis anterior muscle in stroke patients. Top Stroke Rehabil. 2017;24:368–373. doi: 10.1080/10749357.2017.1285745.
    1. Sabatino A, Regolisti G, Bozzoli L, Fani F, Antoniotti R, Maggiore U, et al. Reliability of bedside ultrasound for measurement of quadriceps muscle thickness in critically ill patients with acute kidney injury. Clin Nutr. 2017;36:1710–5.
    1. Heyland DK, Stapleton R, Compher C. Should we prescribe more protein to critically ill patients? Nutrients. 2018;10:462. doi: 10.3390/nu10040462.
    1. Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. JPEN J Parenter Enteral Nutr. 2016;40:795–805. doi: 10.1177/0148607115618449.
    1. Puthucheary ZA, McNelly AS, Rawal J, Connolly B, Sidhu PS, Rowlerson A, et al. Rectus Femoris cross-sectional area and muscle layer thickness: comparative markers of muscle wasting and weakness. Am J Respir Crit Care Med. 2017;195:136–138. doi: 10.1164/rccm.201604-0875LE.
    1. Mandal S, Suh E, Thompson A, Connolly B, Ramsay M, Harding R, et al. Comparative study of linear and curvilinear ultrasound probes to assess quadriceps rectus femoris muscle mass in healthy subjects and in patients with chronic respiratory disease. BMJ Open Respir Res. 2016;3:e000103. doi: 10.1136/bmjresp-2015-000103.
    1. Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2018.
    1. Arabi YM, Casaer MP, Chapman M, Heyland DK, Ichai C, Marik PE, et al. The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med. 2017;43:1239–1256. doi: 10.1007/s00134-017-4711-6.

Source: PubMed

3
S'abonner