Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke

Chingyi Nam, Bingbing Zhang, Tszying Chow, Fuqiang Ye, Yanhuan Huang, Ziqi Guo, Waiming Li, Wei Rong, Xiaoling Hu, Waisang Poon, Chingyi Nam, Bingbing Zhang, Tszying Chow, Fuqiang Ye, Yanhuan Huang, Ziqi Guo, Waiming Li, Wei Rong, Xiaoling Hu, Waisang Poon

Abstract

Background: Most stroke survivors have sustained upper limb impairment in their distal joints. An electromyography (EMG)-driven wrist/hand exoneuromusculoskeleton (WH-ENMS) was developed previously. The present study investigated the feasibility of a home-based self-help telerehabilitation program assisted by the aforementioned EMG-driven WH-ENMS and its rehabilitation effects after stroke.

Methods: Persons with chronic stroke (n = 11) were recruited in a single-group trial. The training progress, including the training frequency and duration, was telemonitored. The clinical outcomes were evaluated using the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), Wolf Motor Function Test (WMFT), Motor Functional Independence Measure (FIM), and Modified Ashworth Scale (MAS). Improvement in muscle coordination was investigated in terms of the EMG activation level and the Co-contraction Index (CI) of the target muscles, including the abductor pollicis brevis (APB), flexor carpi radialis-flexor digitorum (FCR-FD), extensor carpi ulnaris-extensor digitorum (ECU-ED), biceps brachii (BIC), and triceps brachii (TRI). The movement smoothness and compensatory trunk movement were evaluated in terms of the following two kinematic parameters: number of movement units (NMUs) and maximal trunk displacement (MTD). The above evaluations were conducted before and after the training.

Results: All of the participants completed the home-based program with an intensity of 63.0 ± 1.90 (mean ± SD) min/session and 3.73 ± 0.75 (mean ± SD) sessions/week. After the training, motor improvements in the entire upper limb were found, as indicated by the significant improvements (P < 0.05) in the FMA, ARAT, WMFT, and MAS; significant decreases (P < 0.05) in the EMG activation levels of the APB and FCR-FD; significant decreases (P < 0.05) in the CI of the ECU-ED/FCR-FD, ECU-ED/BIC, FCR-FD/APB, FCR-FD/BIC, FCR-FD/TRI, APB/BIC and BIC/TRI muscle pairs; and significant reductions (P < 0.05) in the NMUs and MTD.

Conclusions: The results suggested that the home-based self-help telerehabilitation program assisted by EMG-driven WH-ENMS is feasible and effective for improving the motor function of the paretic upper limb after stroke. Trial registration ClinicalTrials.gov. NCT03752775; Date of registration: November 20, 2018.

Keywords: Home training; Rehabilitation; Robot; Stroke; Telerehabilitation.

Conflict of interest statement

The authors declare no competing interests related to this study.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Experimental and training set up of the EMG-driven WH-ENMS. a Photograph of the EMG-driven WH-ENMS and b the screen captures of the interface. The training set up in a session assisted by the EMG-driven WH-ENMS and configuration of c the horizontal task and d vertical task
Fig. 2
Fig. 2
The Consolidated Standards of Reporting Trials flowchart of the experimental design
Fig. 3
Fig. 3
Pre-training tutorial procedure
Fig. 4
Fig. 4
Timeline of the EMG-driven WH-ENMS-assisted home-based self-help upper limb training program
Fig. 5
Fig. 5
Configuration of EMG recording during the bare arm test
Fig. 6
Fig. 6
Experimental setup for a the horizontal task and b vertical task during three-dimensional motion capturing
Fig. 7
Fig. 7
The measured clinical scores of the a FMA, ARAT, WMFT and FIM, and b the MAS before (Pre) and after (Post) the training represented by means and standard errors. Significance levels are indicated by * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001)
Fig. 8
Fig. 8
a EMG activation levels of the APB and FCR–FD during the bare hand evaluations, and b the EMG CI between the FCR–FD and ECU–ED, ECU–ED and BIC, FCR–FD and APB, FCR–FD and BIC, FCR–FD and TRI, APB and BIC, and BIC and TRI during the bare hand evaluations before (Pre) and after (Post) the training represented by means and standard errors. Significance levels are indicated by * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001)
Fig. 9
Fig. 9
Representative measured trajectory of the hand marker during the transport phases in a the horizontal task and b vertical task for a participant, and the related velocity profiles of the trial before and after training. c The NMUs before (Pre) and after (Post) the training represented in terms of the mean and standard error. Significance levels are indicated by *** (P ≤ 0.001)
Fig. 10
Fig. 10
Representative measured trajectory of the thorax marker over the entire trial for a the horizontal task and b vertical task for a participant, and the related displacement profiles in the trial before and after the training. c The MTD before (Pre) and after (Post) the training represented in terms of the mean and standard error. Significance levels are indicated by * (P ≤ 0.05)

References

    1. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(2):425–437. doi: 10.1093/brain/awm311.
    1. Dobkin BH. Rehabilitation after stroke. N Engl J Med. 2005;352(16):1677–1684. doi: 10.1056/NEJMcp043511.
    1. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629–1637. doi: 10.1053/apmr.2002.35473.
    1. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK, Cen S, et al. Body-weight-suspported treadmill rehabilitation after stroke. N Engl J Med. 2011;364:2026–2036. doi: 10.1056/NEJMoa1010790.
    1. Hung CS, Hsieh YW, Wu CY, Lin YT, Lin KC, Chen CL. The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. J Injury Funct Rehab. 2016 doi: 10.1016/j.pmrj.2016.1001.1008.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Harris JE, Eng JJ. Strength training improves upper-limb function in individuals with stroke: a meta-analysis. Stroke. 2010;41(1):136–140. doi: 10.1161/STROKEAHA.109.567438.
    1. Sun J, Ke Z, Yip SP, Hu XL, Zheng XX, Tong KY. Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. BioMed Res Int. 2014 doi: 10.1155/2014/925762.
    1. Farmer J, Zhao X, Van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124(1):71–79. doi: 10.1016/j.neuroscience.2003.09.029.
    1. Volpe BT, Ferraro M, Lynch D, Christos P, Krol J, Trudell C, Krebs HI, Hogan N. Robotics and other devices in the treatment of patients recovering from stroke. Curr Neurol Neurosci Rep. 2005;5(6):465–470. doi: 10.1007/s11910-005-0035-y.
    1. Dewald JPA, Sheshadri V, Dawson ML, Beer RF. Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil. 2001;8(1):1–12. doi: 10.1310/WA7K-NGDF-NHKK-JAGD.
    1. Kwakkel G. Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil. 2006;28(13–14):823–830. doi: 10.1080/09638280500534861.
    1. Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224–234. doi: 10.1016/S1474-4422(14)70160-7.
    1. Woo J, Chan SY, Sum MWC, Wong E, Chui YPM. In patient stroke rehabilitation efficiency: influence of organization of service delivery and staff numbers. BMC Health Serv Res. 2008;8(1):86. doi: 10.1186/1472-6963-8-86.
    1. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(1):3. doi: 10.1186/1743-0003-11-3.
    1. Chen Y, Abel KT, Janecek JT, Chen Y, Zheng K, Cramer SC. Home-based technologies for stroke rehabilitation: a systematic review. Int J Med Informatics. 2019;123:11–22. doi: 10.1016/j.ijmedinf.2018.12.001.
    1. Allen L, John-Baptiste A, Meyer M, Richardson M, Speechley M, Ure D, Markle-Reid M, Teasell R. Assessing the impact of a home-based stroke rehabilitation programme: a cost-effectiveness study. Disability Rehabil. 2019;41(17):2060–2065. doi: 10.1080/09638288.2018.1459879.
    1. Sarfo FS, Ulasavets U, Opare-Sem OK, Ovbiagele B. Tele-rehabilitation after stroke: an updated systematic review of the literature. J Stroke Cerebrovasc Dis. 2018;27(9):2306–2318. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.013.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:1.
    1. Dodakian L, McKenzie AL, Le V, See J, Pearson-Fuhrhop K, Burke Quinlan E, Zhou RJ, Augsberger R, Tran XA, Friedman N. A home-based telerehabilitation program for patients with stroke. Neurorehabil Neural Repair. 2017;31(10–11):923–933. doi: 10.1177/1545968317733818.
    1. Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O’Connor RJ, Levesley M. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil. 2014;11(1):163. doi: 10.1186/1743-0003-11-163.
    1. Held JP, Ferrer B, Mainetti R, Steblin A, Hertler B, Moreno-Conde A, Dueñas A, Pajaro M, Vargiu E, Zarco MJ: Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system. 2017. doi: 10.23736/S21973-29087.23717.04802-X.
    1. Triandafilou KM, Tsoupikova D, Barry AJ, Thielbar KN, Stoykov N, Kamper DG. Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke. J Neuroeng Rehabil. 2018;15(1):88. doi: 10.1186/s12984-018-0429-0.
    1. Sheehy L, Taillon-Hobson A, Sveistrup H, Bilodeau M, Yang C, Welch V, Hossain A, Finestone H. Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial. Trials. 2019;20(1):1–9. doi: 10.1186/s13063-019-3438-9.
    1. Lambercy O, Dovat L, Yun H, Wee SK, Kuah CW, Chua KS, Gassert R, Milner TE, Teo CL, Burdet E. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011;8(1):63. doi: 10.1186/1743-0003-8-63.
    1. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–670. doi: 10.1097/WCO.0b013e32833e99a4.
    1. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–319. doi: 10.1177/1545968308328727.
    1. Raghavan P. Upper limb motor impairment after stroke. Physical Medicine and Rehabilitation Clinics. 2015;26(4):599–610.
    1. Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training medicated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22:305–310. doi: 10.1177/1545968307311102.
    1. Chae J, Kilgore K, Triolo R, Yu D. Neuromuscular stimulation for motor neuroprosthesis in hemiplegia. Crit Rev Phys Rehabil Med. 2000;12:1–23. doi: 10.1615/CritRevPhysRehabilMed.v12.i1.10.
    1. Rodgers MM, Alon G, Pai VM, Conroy RS. Wearable technologies for active living and rehabilitation: Current research challenges and future opportunities. J Rehabil Assist Technol Eng. 2019;26:6. doi: 10.1177/2055668319839607.
    1. Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehab. 2014;11(1):111. doi: 10.1186/1743-0003-11-111.
    1. Hu XL, Tong KY, Song R, Zheng XJ, Leung WWF. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair. 2009;23(8):837–846. doi: 10.1177/1545968309338191.
    1. Hu XL, W. Rong, W.M. Li, C.Y. Nam, Y.J. Wei, T.C. Cheung, H.H. Wai, and J.Y. Hu: Physical rehabilitation apparatus, method, computer storage medium and electronic device. 2018:Application Number: PCT/CN2018/125005.
    1. Nam C, Rong W, Li W, Cheung C, Ngai W, Cheung T, Pang M, Li L, Hu J, Wai H, et al. An Exoneuromusculoskeleton for Self-Help Upper Limb Rehabilitation After Stroke. Soft Robot. 2020 doi: 10.1089/soro.2020.0090.
    1. Qiuyang Q, Nam C, Guo Z, Huang Y, Hu XL, Ng SC, Zheng Y, Poon W. Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2019;16(1):64. doi: 10.1186/s12984-019-0537-5.
    1. Ashwoth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964;192:540–542.
    1. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehab Med. 1975;7(1):13–31.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Provos N, Mazieres D: A Future-Adaptable Password Scheme. In: USENIX Annual Technical Conference, FREENIX Track: 1999; 1999: 81–91.
    1. Krebs HI, Volpe BT: Rehabilitation robotics. In: Handbook of clinical neurology. vol. 110: Elsevier; 2013: 283–294.
    1. Carroll D. A quantitative test of upper extremity function. J Chronic Dis. 1965;18(5):479–491. doi: 10.1016/0021-9681(65)90030-5.
    1. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–132. doi: 10.1016/S0014-4886(89)80005-6.
    1. Granger CV, Hamilton BB, Keith RA, Zielezny M, Sherwin FS. Advances in functional assessment for medical rehabilitation. Topics in geriatric rehabilitation. 1986;1(3):59–74. doi: 10.1097/00013614-198604000-00007.
    1. Hu XL, Tong KY, Song R, Tsang VS, Leung PO, Li L. Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training. Arch Phys Med Rehabil. 2007;88(8):1022–1029. doi: 10.1016/j.apmr.2007.05.006.
    1. Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WWF, Ng S, Au-Yeung SSY. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol. 2009;19(4):639–650. doi: 10.1016/j.jelekin.2008.04.002.
    1. Oh HS, Kim EJ, Kim DY, Kim SJ. Effects of adjuvant mental practice on affected upper limb function following a stroke: results of three-dimensional motion analysis, fugl-meyer assessment of the upper extremity and motor activity logs. Ann Rehabil Med. 2016;40(3):401. doi: 10.5535/arm.2016.40.3.401.
    1. Hingtgen B, McGuire JR, Wang M, Harris GF. An upper extremity kinematic model for evaluation of hemiparetic stroke. J Biomech. 2006;39(4):681–688. doi: 10.1016/j.jbiomech.2005.01.008.
    1. Murphy MA, Willén C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):71–80. doi: 10.1177/1545968310370748.
    1. Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ. Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil. 2002;83(5):702–707. doi: 10.1053/apmr.2002.32446.
    1. Shapiro SS, Wilk MB, Chen HJ. A comparative study of various tests for normality. J Am Stat Assoc. 1968;63(324):1343–1372. doi: 10.1080/01621459.1968.10480932.
    1. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples) Biometrika. 1965;52(3/4):591–611. doi: 10.2307/2333709.
    1. Cauraugh J, Light K, Kim S, Thigpen M, Behrman A. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000;31(6):1360–1364. doi: 10.1161/01.STR.31.6.1360.
    1. Chae J, Yang G, Park BK, Labatia I. Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil Neural Repair. 2002;16(3):241–248. doi: 10.1177/154596830201600303.
    1. Bakheit A, Maynard V, Curnow J, Hudson N, Kodapala S. The relation between Ashworth scale scores and the excitability of the α motor neurones in patients with post-stroke muscle spasticity. J Neurol Neurosurg Psychiatry. 2003;74(5):646–648. doi: 10.1136/jnnp.74.5.646.
    1. Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995;118(2):495–510. doi: 10.1093/brain/118.2.495.
    1. Nordin N, Xie SQ, Wünsche B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014;11(1):137. doi: 10.1186/1743-0003-11-137.
    1. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–8304. doi: 10.1523/JNEUROSCI.22-18-08297.2002.
    1. Wu C-y, Yang C-l, Lin K-c, Wu L-l. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial. J Neuroeng Rehabil. 2013;10(1):35. doi: 10.1186/1743-0003-10-35.
    1. Thielman G, Kaminski T, Gentile AM. Rehabilitation of reaching after stroke: comparing 2 training protocols utilizing trunk restraint. Neurorehabil Neural Repair. 2008;22(6):697–705. doi: 10.1177/1545968308315998.
    1. Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res. 2002;143(2):171–180. doi: 10.1007/s00221-001-0976-6.
    1. Takeuchi N, Izumi S-I. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012;2012:1.
    1. Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J Neuroeng Rehabil. 2015;12(1):42. doi: 10.1186/s12984-015-0033-5.
    1. Hu X-L. Tong RK-y, Ho NS, Xue J-j, Rong W, Li LS: Wrist Rehabilitation assisted by an electromyography-driven neuromuscular electrical stimulation robot after stroke. Neurorehab Neural Rep. 2015;29(8):767–776. doi: 10.1177/1545968314565510.
    1. Nam C, Rong W, Li W, Xie Y, Hu XL, Zheng YP. The effects of upper-limb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke. Front Neurol. 2017;8:679. doi: 10.3389/fneur.2017.00679.
    1. Huang Y, Nam C, Li W, Rong W, Xie Y, Liu Y, Qian Q, Hu X. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial. Biomed Signal Process Control. 2020;56:101723. doi: 10.1016/j.bspc.2019.101723.
    1. McCabe JP, Henniger D, Perkins J, Margaret S, Curtis T, Pundik S. Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: a clinical case series report. PLoS ONE. 2019;14:4.
    1. Islam M, Spiewak C, Rahman M, Fareh R. A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research porotype and commercial type. Adv Robot Autom. 2017;6(3):2. doi: 10.4172/2168-9695.1000177.
    1. Burgar CG, Lum PS, Scremin A, Garber SL, Van der Loos H, Kenney D, Shor P. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev. 2011;48(4):445–458. doi: 10.1682/JRRD.2010.04.0062.
    1. Nijenhuis SM, Prange-Lasonder GB, Stienen AH, Rietman JS, Buurke JH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil. 2017;31(2):207–216. doi: 10.1177/0269215516629722.
    1. Nijenhuis SM, Prange GB, Amirabdollahian F, Sale P, Infarinato F, Nasr N, Mountain G, Hermens HJ, Stienen AH, Buurke JH. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J Neuroeng Rehabil. 2015;12(1):89. doi: 10.1186/s12984-015-0080-y.
    1. Cherry COB, Chumbler NR, Richards K, Huff A, Wu D, Tilghman LM, Butler A. Expanding stroke telerehabilitation services to rural veterans: A qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program. Disabil Rehabil Assist Technol. 2017;12(1):21–27. doi: 10.3109/17483107.2015.1061613.
    1. Mohd Nordin NA, Aziz NAA, Abdul Aziz AF, Ajit Singh DK, Omar Othman NA, Sulong S, Aljunid SM. Exploring views on long term rehabilitation for people with stroke in a developing country: findings from focus group discussions. BMC Health Serv Res. 2014;14(1):118. doi: 10.1186/1472-6963-14-118.
    1. Pishkhani MK, Dalvandi A, Ebadi A, Hosseini M. Factors affecting adherence to rehabilitation in Iranian stroke patients: A qualitative study. J Vasc Nurs. 2019;37(4):264–271. doi: 10.1016/j.jvn.2019.07.001.
    1. Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol. 2013;23(5):1065–1074. doi: 10.1016/j.jelekin.2013.07.007.
    1. Qian Q, Hu XL, Lai Q, Ng SC, Zheng YP, Poon WS. Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front Neurol. 2017;8:447. doi: 10.3389/fneur.2017.00447.
    1. Canning CG, Ada L, O’Dwyer NJ. Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J Neurol Sci. 2000;176(1):45–56. doi: 10.1016/S0022-510X(00)00305-1.
    1. Kamper DG, Rymer WZ. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve. 2001;24(5):673–681. doi: 10.1002/mus.1054.
    1. Cutti AG, Paolini G, Troncossi M, Cappello A, Davalli A. Soft tissue artefact assessment in humeral axial rotation. Gait Posture. 2005;21(3):341–349. doi: 10.1016/j.gaitpost.2004.04.001.
    1. Murray IA. Determining upper limb kinematics and dynamics during everyday tasks. In: Doctoral dissertation. Newcastle upon Tyne: Newcastle University; 1999.
    1. Tabak J. Geometry: the language of space and form. New York: Infobase Publishing; 2014.

Source: PubMed

3
S'abonner