Reactive case-detection of malaria in Pailin Province, Western Cambodia: lessons from a year-long evaluation in a pre-elimination setting

John Hustedt, Sara E Canavati, Chandary Rang, Ruth A Ashton, Nimol Khim, Laura Berne, Saorin Kim, Siv Sovannaroth, Po Ly, Didier Ménard, Jonathan Cox, Sylvia Meek, Arantxa Roca-Feltrer, John Hustedt, Sara E Canavati, Chandary Rang, Ruth A Ashton, Nimol Khim, Laura Berne, Saorin Kim, Siv Sovannaroth, Po Ly, Didier Ménard, Jonathan Cox, Sylvia Meek, Arantxa Roca-Feltrer

Abstract

Background: As momentum towards malaria elimination grows, strategies are being developed for scale-up in elimination settings. One prominent strategy, reactive case detection (RACD), involves screening and treating individuals living in close proximity to passively detected, or "index" cases. This study aims to use RACD to quantify Plasmodium parasitaemia in households of index cases, and identify risk factors for infection; these data could inform reactive screening approaches and identify target risk groups.

Methods: This study was conducted in the Western Cambodian province of Pailin between May 2013 and March 2014 among 440 households. Index participants/index cases (n = 270) and surrounding households (n = 110) were screened for Plasmodium infection with rapid diagnostic tests (RDT), microscopy and real-time polymerase chain reaction (PCR). Participants were interviewed to identify risk factors. A comparison group of 60 randomly-selected households was also screened, to compare infection levels of RACD and non-RACD households. In order to identify potential risk factors that would inform screening approaches and identify risk groups, multivariate logistic regression models were applied.

Results: Nine infections were identified in households of index cases (RACD approach) through RDT screening of 1898 individuals (seven Plasmodium vivax, two Plasmodium falciparum); seven were afebrile. Seventeen infections were identified through PCR screening of 1596 individuals (15 P. vivax, and 22 % P. falciparum/P. vivax mixed infections). In the control group, 25 P. falciparum infections were identified through PCR screening of 237 individuals, and no P. vivax was found. Plasmodium falciparum infection was associated with fever (p = 0.013), being a member of a control household (p ≤ 0.001), having a history of malaria infection (p = 0.041), and sleeping without a mosquito net (p = 0.011). Significant predictors of P. vivax infection, as diagnosed by PCR, were fever (p = 0.058, borderline significant) and history of malaria infection (p ≤ 0.001).

Conclusion: This study found that RACD identified very few secondary infections when targeting index and neighbouring households for screening. The results suggest RACD is not appropriate, where exposure to malaria occurs away from the community, and there is a high level of treatment-seeking from the private sector. Piloting RACD in a range of transmission settings would help to identify the ideal environment for feasible and effective reactive screening methods.

References

    1. Bill and Melinda Gates Foundation: Call for New Global Commitment to Chart a Course for Malaria Eradication. 2007.
    1. Bill and Melinda Gates Foundation: Gates Foundation Commits More than $500 Million to Tackle The burden of infectious disease in developing countries. 2014.
    1. East Asia Summit: Chairman’s Statement of 9th East Asia Summit. Myanmar 2014.
    1. Gueye CS, Sanders KC, Galappaththy GN, Rundi C, Tobgay T, Sovannaroth S, et al. Active case detection for malaria elimination: a survey among Asia Pacific countries. Malar J. 2013;12:358. doi: 10.1186/1475-2875-12-358.
    1. Zelman B, Kiszewski A, Cotter C, Liu J. Costs of eliminating malaria and the impact of the global fund in 34 countries. PLoS ONE. 2014;9:e115714. doi: 10.1371/journal.pone.0115714.
    1. WHO. Disease surveillance for malaria elimination. Geneva, World Health Organization, 2012.
    1. Maude R, Nguon C, Ly P, Bunkea T, Ngor P, Canavati de la Torre S, et al. Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013. Malar J. 2014;13:385. doi: 10.1186/1475-2875-13-385.
    1. Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12:833–840. doi: 10.1038/nrmicro3364.
    1. Branch O, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J. 2005;4:27. doi: 10.1186/1475-2875-4-27.
    1. Littrell M, Sow GD, Ngom A, Ba M, Mboup BM, Dieye Y, Mutombo B, Earle D, Steketee RW. Case investigation and reactive case detection for malaria elimination in northern Senegal. Malar J. 2013;12:331. doi: 10.1186/1475-2875-12-331.
    1. Searle KM, Shields T, Hamapumbu H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS One. 2013;8:e70972. doi: 10.1371/journal.pone.0070972.
    1. Stresman GH, Kamanga A, Moono P, Hamapumbu H, Mharakurwa S, Kobayashi T, et al. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province Zambia. Malar J. 2010;9:265.
    1. Sturrock HJ, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS One. 2013;8:e63830. doi: 10.1371/journal.pone.0063830.
    1. Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol. 2014;30:183–190. doi: 10.1016/j.pt.2014.02.004.
    1. Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013;10:e1001467. doi: 10.1371/journal.pmed.1001467.
    1. Wickremasinghe R, Fernando SD, Thillekaratne J, Wijeyaratne PM, Wickremasinghe AR. Importance of active case detection in a malaria elimination programme. Malar J. 2014;13:186. doi: 10.1186/1475-2875-13-186.
    1. WHO. Malaria elimination. A field manual for low and moderate endemic countries. Geneva: World Health Organization; 2007:98.
    1. Gaudart J, Poudiougou B, Dicko A, Ranque S, Toure O, Sagara I, et al. Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village. BMC Public Health. 2006;6:286. doi: 10.1186/1471-2458-6-286.
    1. Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7:e1000304. doi: 10.1371/journal.pmed.1000304.
    1. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis. 2010;201:1764–1774. doi: 10.1086/652456.
    1. Sutcliffe CG, Kobayashi T, Hamapumbu H, Shields T, Mharakurwa S, Thuma PE, et al. Reduced risk of malaria parasitemia following household screening and treatment: a cross-sectional and longitudinal cohort study. PLoS One. 2012;7:e31396. doi: 10.1371/journal.pone.0031396.
    1. Tiono AB, Ouedraogo A, Ogutu B, Diarra A, Coulibaly S, Gansane A, et al. A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J. 2013;12:79. doi: 10.1186/1475-2875-12-79.
    1. Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254. doi: 10.1186/1475-2875-9-254.
    1. Hoyer S, Nguon S, Kim S, Habib N, Khim N, Sum S, et al. Focused Screening and Treatment (FSAT): a PCR-based strategy to detect malaria parasite carriers and contain drug resistant P. falciparum, Pailin, Cambodia. PLoS One. 2012;7:e45797. doi: 10.1371/journal.pone.0045797.
    1. Mosha JF, Sturrock HJ, Greenhouse B, Greenwood B, Sutherland CJ, Gadalla N, et al. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J. 2013;12:221. doi: 10.1186/1475-2875-12-221.
    1. Rogawski ET, Congpuong K, Sudathip P, Satimai W, Sug-aram R, Aruncharus S, et al. Active case detection with pooled real-time PCR to eliminate malaria in Trat province Thailand. Am J Trop Med Hyg. 2012;86:789–791. doi: 10.4269/ajtmh.2012.11-0617.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981.
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. WHO. Progress on the containment of artemisinin tolerant malaria parasites in South-East Asia (ARCE) initiative. Geneva:World Health Organization; 2010.
    1. Cox J, Dy Soley L, Bunkea T, Sovannaroth S, Soy Ty K, Ngak S, et al. Evaluation of community-based systems for the surveillance of day three-positive Plasmodium falciparum cases in Western Cambodia. Malar J. 2014;13:282. doi: 10.1186/1475-2875-13-282.
    1. Canier L, Khim N, Kim S, Sluydts V, Heng S, Dourng D, et al. An innovative tool for moving malaria PCR detection of parasite reservoir into the field. Malar J. 2013;12:405. doi: 10.1186/1475-2875-12-405.
    1. National Center for Parasitology EaMC: Report of the Cambodia Malaria Survey 2013. 2014.
    1. (ADB) ADB: Inception Report: Regional Public Goods for Health—Combating Dengue in ASEAN. Asian Development Bank (ADB); 2010.
    1. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237. doi: 10.1038/ncomms2241.
    1. Von Seidlein L. The failure of screening and treating as a malaria elimination strategy. PLoS Med. 2014;11:e1001595. doi: 10.1371/journal.pmed.1001595.
    1. WHO. Consideration of mass drug administration for the containment of artemisinin resistant malaria in the greater Mekong subregion. Geneva: World Health Organization; 2010.
    1. WHO. Minutes of the drug resistance and containment technical expert group. Geneva: World Health Organization; 2014.
    1. Dambach P, Sie A, Lacaux JP, Vignolles C, Machault V, Sauerborn R. Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso. Glob Health Action. 2009;2(10):3402.
    1. Moss WJ, Hamapumbu H, Kobayashi T, Shields T, Kamanga A, Clennon J, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J. 2011;10:163. doi: 10.1186/1475-2875-10-163.
    1. Cox J, Sovannaroth S, Soley LD, Ngor P, Mellor S, Roca-Feltrer A. Novel approaches to risk stratification to support malaria elimination: an example from Cambodia. Malar J. 2014;13:371. doi: 10.1186/1475-2875-13-371.

Source: PubMed

3
S'abonner