Comparison of feasibility and results of frailty assessment methods prior to left ventricular assist device implantation

Luise Roehrich, Simon H Sündermann, Isabell Anna Just, Laurenz Kopp Fernandes, Julia Stein, Natalia Solowjowa, Johanna Mulzer, Marcus Mueller, Manfred Hummel, Jan Knierim, Evgenij Potapov, Volkmar Falk, Felix Schoenrath, Luise Roehrich, Simon H Sündermann, Isabell Anna Just, Laurenz Kopp Fernandes, Julia Stein, Natalia Solowjowa, Johanna Mulzer, Marcus Mueller, Manfred Hummel, Jan Knierim, Evgenij Potapov, Volkmar Falk, Felix Schoenrath

Abstract

Aims: Assessing frailty and sarcopenia is considered a valuable cornerstone of perioperative risk stratification in advanced heart failure patients. The lack of an international consensus on a diagnostic standard impedes its implementation in the clinical routine. This study aimed to compare the feasibility and prognostic impact of different assessment tools in patients undergoing continuous-flow left ventricular assist device (cf-LVAD) implantation.

Methods and results: We prospectively compared feasibility and prognostic values of six frailty/sarcopenia assessment methods in 94 patients prior to cf-LVAD implantation: bioelectrical impedance analysis (BIA), computed tomography (CT)-based measurement of two muscle areas/body surface area [erector spinae muscle (TMESA/BSA) and iliopsoas muscle (TPA/BSA)], physical performance tests [grip strength, 6 min walk test (6MWT)] and Rockwood Clinical Frailty Scale (RCFS). Six-month mortality and/or prolonged ventilation time >95 h was defined as the primary endpoint. BIA and CT showed full feasibility (100%); physical performance and RCFS was limited due to patients' clinical status (feasibility: 87% grip strength, 62% 6MWT, 88% RCFS). Phase angle derived by BIA showed the best results regarding the prognostic value for 6 month mortality and/or prolonged ventilation time >95 h (odds ratio (OR) 0.66 [95% confidence interval (CI): 0.46-0.92], P = 0.019; area under the curve (AUC) 0.65). It provided incremental value to the clinical risk assessment of EuroSCORE II: C-index of the combined model was 0.75 [95% CI; 0.651-0.848] compared with C-index of EuroSCORE II alone, which was 0.73 (95% CI: 0.633-0.835). Six-month survival was decreased in patients with reduced body cell mass derived by BIA or reduced muscle area in the CT scan compared with patients with normal values: body cell mass 65% (95% CI: 51.8-81.6%) vs. 83% (95% CI: 74.0-93.9%); P = 0.03, TMESA/BSA 65% (95% CI: 51.2-82.2%) vs. 82% (95% CI: 73.2-93.0%); P = 0.032 and TPA/BSA 66% (95% CI: 53.7-81.0%) vs. 85% (95% CI: 75.0-95.8%); P = 0.035.

Conclusions: Bioelectrical impedance analysis parameters and CT measurements were shown to be suitable to predict 6-month mortality and/or prolonged ventilation time >95 h in patients with advanced heart failure prior to cf-LVAD implantation. Phase angle had the best predictive capacity and sarcopenia diagnosed by reduced body cell mass in BIA or muscle area in CT was associated with a decreased 6 month survival.

Trial registration: ClinicalTrials.gov NCT04222400.

Keywords: Advanced heart failure; Bioelectrical impedance analysis; Frailty evaluation; Sarcopenia; Ventricular assist device.

Conflict of interest statement

Prof Dr Falk reports grants from Medtronic GmbH, Abbott GmbH & Co. KG, Boston Scientific, Edwards Lifesciences, JOTEC/CryoLife and other financial activities from Berlin Heart, Biotronik SE & Co., Novartis Pharma GmbH, Zurich Heart outside of the submitted work.

Dr Schoenrath reports other financial activities from Novartis, Abbott, Orion Pharma, AstraZeneca and non‐financial support from Medtronic outside of the submitted work.

Ms Roehrich reports grants from the German Heart Foundation during the conduct of the study. Share holdings of Alianz SE, Carl Zeiss Meditec AG, CompuGroup Medical SE & Co. KGaA, Evotec SE, Fresenius Medical Care AG & Co. KGaA outside of the submitted work.

Nothing to disclose for the other authors.

© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Figures

Figure 1
Figure 1
Feasibility of frailty/sarcopenia assessments. Number and percentage of patients, who participated in the measurements and description of time between measurement and cf‐LVAD implantation. Abbreviations: BIA = bioelectrical impedance analysis; TMESA/BSA = total muscle areas of the erector spinae muscle/body surface area; TPA/BSA = total muscle areas of the iliopsoas muscle/body surface area; 6MWT = 6 minute walk test; RCFS = Rockwood Clinical Frailty Scale.
Figure 2
Figure 2
Univariable logistic regression analysis. Odds ratio of frailty/sarcopenia assessments for the endpoint 6 month mortality and/or ventilation time >95 h. Abbreviations: CT = computed tomography; TMESA/BSA = total muscle areas of the erector spinae muscle/body surface area; TPA/BSA = total muscle areas of the iliopsoas muscle/body surface area.
Figure 3
Figure 3
Multivariable logistic regression analysis. Odds ratio and statement of the C‐index of frailty/sarcopenia assessments adjusted for clinical risk represented by EuroSCORE II in a multivariable logistic regression analysis for the endpoint 6‐month mortality and/or ventilation time >95 h. Abbreviations: TMESA/BSA = total muscle areas of the erector spinae muscle/body surface area; TPA/BSA = total muscle areas of the iliopsoas muscle/body surface area.
Figure 4
Figure 4
Six‐month survival—patients with normal measurement results (Group 1) vs. patient with reduced results (Group 2). Abbreviations: BCM = body cell mass; TMESA/BSA = total muscle areas of the erector spinae muscle/body surface area; TPA/BSA = total muscle areas of the iliopsoas muscle/body surface area; 6MWT = 6 min walk test; RCFS = Rockwood Clinical Frailty Scale.

References

    1. Starling RC, Estep JD, Horstmanshof DA, Milano CA, Stehlik J, Shah KB, Bruckner BA, Lee S, Long JW, Selzman CH, Kasirajan V, Haas DC, Boyle AJ, Chuang J, Farrar DJ, Rogers JG, ROADMAP Study Investigators . Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2‐year results. JACC Heart Fail 2017; 5: 518–527.
    1. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB, Naftel DC. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 2017; 36: 1080–1086.
    1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 2015; 34: 1495–1504.
    1. Caraballo C, DeFilippis EM, Nakagawa S, Ravindra NG, Miller PE, Mezzacappa C, McCullough M, Gruen J, Levin A, Reinhardt S, Mullan C, Ali A, Maurer MS, Desai NR, Ahmad T, Topkara VK. Clinical outcomes after left ventricular assist device implantation in older adults: an INTERMACS analysis. JACC Heart failure 2019; 7: 1069–1078.
    1. Dunlay SM, Park SJ, Joyce LD, Daly RC, Stulak JM, McNallan SM, Roger VL, Kushwaha SS. Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant 2014; 33: 359–365 Epub 2013 Dec 27. PMID: 24486165; PMCID: PMC3966938.
    1. Chikwe J, Adams DH. Frailty: the missing element in predicting operative mortality. Semin Thorac Cardiovasc Surg 2010; 22: 109–110.
    1. Furukawa H, Tanemoto K. Frailty in cardiothoracic surgery: systematic review of the literature. Gen Thorac Cardiovasc Surg 2015; 63: 425–433 Epub 2015 Apr 28. PMID: 25916404.
    1. Joseph SM, Manghelli JL, Vader JM, Keeney T, Novak EL, Felius J, Martinez SC, Nassif ME, Lima B, Silvestry SC, Rich MW. Prospective assessment of frailty using the fried criteria in patients undergoing left ventricular assist device therapy. Am J Cardiol 2017; 120: 1349–1354 Epub 2017 Aug 1. PMID: 28843393.
    1. Tse G, Gong M, Wong SH, Wu W, Bazoukis G, Lampropoulos K, Wong WT, Xia Y, Wong M, Liu T, Woo J, International Health Informatics Study (IHIS) Network . Frailty and clinical outcomes in advanced heart failure patients undergoing left ventricular assist device implantation: a systematic review and meta‐analysis. J Am Med Dir Assoc 2018; 19: 255–261.e1.
    1. Vitale C, Jankowska E, Hill L, Piepoli M, Doehner W, Anker SD, Lainscak M, Jaarsma T, Ponikowski P, Rosano G, Seferovic P, Coats AJ. Heart Failure Association/European Society of Cardiology position paper on frailty in patients with heart failure. Eur J Heart Fail 2019; 21: 1299–1305.
    1. Potapov EV, Antonides C, Crespo‐Leiro MG, Combes A, Färber G, Hannan MM, Kukucka M, de Jonge N, Loforte A, Lund LH, Mohacsi P, Morshuis M, Netuka I, Özbaran M, Pappalardo F, Scandroglio AM, Schweiger M, Tsui S, Zimpfer D, Gustafsson F. 2019 EACTS expert consensus on long‐term mechanical circulatory support. Eur J Cardiothorac Surg 2019; 56: 230–270.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group . Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146–M156.
    1. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, Gutierrez Robledo LM, Rockwood K, von Haehling S, Vandewoude MF, Walston J. Frailty consensus: a call to action. J Am Med Dir Assoc 2013; 14: 392–397.
    1. Cruz‐Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People . Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412–423.
    1. Xue QL, Varadhan R. What is missing in the validation of frailty instruments? J Am Med Dir Assoc 2014; 15: 141–142.
    1. Denfeld QE, Winters‐Stone K, Mudd JO, Gelow JM, Kurdi S, Lee CS. The prevalence of frailty in heart failure: a systematic review and meta‐analysis. Int J Cardiol 2017; 236: 283–289.
    1. McNallan SM, Chamberlain AM, Gerber Y, Singh M, Kane RL, Weston SA, Dunlay SM, Jiang R, Roger VL. Measuring frailty in heart failure: a community perspective. Am Heart J 2013; 166: 768–774.
    1. Cruz‐Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 . Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16–31.
    1. Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? J Cachexia Sarcopenia Muscle 2017; 8: 187–189.
    1. Kilic MK, Kizilarslanoglu MC, Arik G, Bolayir B, Kara O, Dogan Varan H, Sumer F, Kuyumcu ME, Halil M, Ulger Z. Association of bioelectrical impedance analysis‐derived phase angle and sarcopenia in older adults. Nutr Clin Pract 2017; 32: 103–109.
    1. Bansal N, Zelnick LR, Himmelfarb J, Chertow GM. Bioelectrical impedance analysis measures and clinical outcomes in CKD. Am J Kidney Dis 2018; 72: 662–672.
    1. González‐Islas D, Arámbula‐Garza E, Orea‐Tejeda A, Castillo‐Martínez L, Keirns‐Davies C, Salgado‐Fernández F, Hernández‐Urquieta L, Hernández‐López S, Pilotzi‐Montiel Y. Body composition changes assessment by bioelectrical impedance vectorial analysis in right heart failure and left heart failure. Heart Lung 2020; 49: 42–47.
    1. Tanaka S, Ando K, Kobayashi K, Seki T, Hamada T, Machino M, Ota K, Morozumi M, Kanbara S, Ito S, Ishiguro N, Hasegawa Y, Imagama S. Low bioelectrical impedance phase angle is a significant risk factor for frailty. Biomed Res Int 2019; 2019: 6283153.
    1. Mullie L, Obrand A, Bendayan M, Trnkus A, Ouimet MC, Moss E, Chen‐Tournoux A, Rudski LG, Afilalo J. Phase angle as a biomarker for frailty and postoperative mortality: the BICS study. J Am Heart Assoc 2018; 7: e008721.
    1. Data Input GmbH . Das B.I.A.‐Kompendium 3. Ausgabe. 3rd ed. Data Input GmbH 2005. German.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent‐Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C, Composition of the ESPEN Working Group . Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr (Edinburgh, Scotland) 2004; 23: 1226–1243.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, Lilienthal Heitmann B, Kent‐Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C, ESPEN . Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr (Edinburgh, Scotland) 2004; 23: 1430–1453.
    1. Miller JA, Harris K, Roche C, Dhillon S, Battoo A, Demmy T, Nwogu CE, Dexter EU, Hennon M, Picone A, Attwood K, Yendamuri S. Sarcopenia is a predictor of outcomes after lobectomy. J Thorac Dis 2018; 10: 432–440.
    1. Heberton GA, Nassif M, Bierhals A, Novak E, LaRue SJ, Lima B, Hall S, Silvestry S, Joseph SM. Usefulness of psoas muscle area determined by computed tomography to predict mortality or prolonged length of hospital stay in patients undergoing left ventricular assist device implantation. Am J Cardiol 2016; 118: 1363–1367.
    1. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Nutrition (Burbank, Los Angeles County, Calif) 1989; 5: 303–313.
    1. Minegishi Y, Inoue S, Sato K, Abe K, Murano H, Furuyama K, Yang S, Machida H, Nakano H, Sato M, Nemoto T, Sato C, Nishiwaki M, Kimura T, Yamauchi K, Igarashi A, Tokairin Y, Shibata Y, Watanabe M. Smaller erector spinae muscle size is associated with inability to recover activities of daily living after pneumonia treatment. Respir Investig 2019; 57: 191–197 Epub 2018 Dec 11. PMID: 30552073.
    1. Chung CJ, Wu C, Jones M, Kato TS, Dam TT, Givens RC, Templeton DL, Maurer MS, Naka Y, Takayama H, Mancini DM, Schulze PC. Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. J Card Fail 2014; 20: 310–315.
    1. SAEHAN™ grip strength dynamometer (Korea). , (16 January 2021)
    1. Rostagno C, Olivo G, Comeglio M, Boddi V, Banchelli M, Galanti G, Gensini GF. Prognostic value of 6‐minute walk corridor test in patients with mild to moderate heart failure: comparison with other methods of functional evaluation. Eur J Heart Fail 2003; 5: 247–252.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories . ATS statement: guidelines for the six‐minute walk test. Am J Respir Crit Care Med 2002; 166: 111–117.
    1. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173: 489–495.
    1. InEK, Fallpauschalenkatalog—G‐DRG‐System 2019. , (31/7/2019)
    1. Kou HW, Yeh CH, Tsai HI, Hsu CC, Hsieh YC, Chen WT, Cheng HT, Yu MC, Lee CW. Sarcopenia is an effective predictor of difficult‐to‐wean and mortality among critically ill surgical patients. PLoS ONE 2019; 14: e0220699.
    1. Akyar S, Armenia SJ, Ratnani P, Merchant AM. The impact of frailty on postoperative cardiopulmonary complications in the emergency general surgery population. Surg J (New York, NY) 2018; 4: e66–e77.
    1. Papathanasiou M, Mincu RI, Lortz J, Horacek M, Koch A, Pizanis N, Kamler M, Rassaf T, Luedike P. Prolonged mechanical ventilation after left ventricular assist device implantation: risk factors and clinical implications. ESC Heart Fail 2019; 6: 545–551.
    1. Biermann A, Geissler A. Beatmungsfälle und Beatmungsdauer in deutschen krankenhäusern, Edition: 1 ed. German: Universitätsverlag der TU Berlin. ISBN: 978‐3‐7983‐2631‐6; 2014.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, REDCap Consortium . The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019; 95: 103208.
    1. Belletti A, Jacobs S, Affronti G, Mladenow A, Landoni G, Falk V, Schoenrath F. Incidence and predictors of postoperative need for high‐dose inotropic support in patients undergoing cardiac surgery for infective endocarditis. J Cardiothorac Vasc Anesth 2018; 32: 2528–2536.
    1. Ayesta A, Astiz M, Masa M, Segovia J, Cosío M, Martínez‐Sellés M. Rationale and design of the FELICITAR registry (Frailty Evaluation After List Inclusion, Characteristics and Influence on Transplantation and Results). Clin Cardiol 2018; 41: 293–299.
    1. Pugh RJ, Ellison A, Pye K, Subbe CP, Thorpe CM, Lone NI, Clegg A. Feasibility and reliability of frailty assessment in the critically ill: a systematic review. Crit Care 2018; 22: 49.
    1. Jha SR, Hannu MK, Chang S, Montgomery E, Harkess M, Wilhelm K, Hayward CS, Jabbour A, Spratt PM, Newton P, Davidson PM, Macdonald PS. The prevalence and prognostic significance of frailty in patients with advanced heart failure referred for heart transplantation. Transplantation 2016; 100: 429–436 PMID: 26516676.
    1. Kirklin JK, Xie R, Cowger J, de By T, Nakatani T, Schueler S, Taylor R, Lannon J, Mohacsi P, Gummert J, Goldstein D, Caliskan K, Hannan MM. Second annual report from the ISHLT mechanically assisted circulatory support registry. J Heart Lung Transplant 2018; 37: 685–691.
    1. Damuth E, Mitchell JA, Bartock JL, Roberts BW, Trzeciak S. Long‐term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta‐analysis. Lancet Respir Med 2015; 3: 544–553.
    1. Roehrich L, Suendermann S, Just IA, Knierim J, Mulzer J, Mueller M, Eulert‐Grehn JJ, Hummel M, Starck C, Potapov E, Knosalla C, Falk V, Schoenrath F. Safety of bioelectrical impedance analysis in advanced heart failure patients. Pacing Clin Electrophysiol: PACE 2020; 43: 1078–1085.
    1. Cooper LB, Hammill BG, Allen LA, Lindenfeld J, Mentz RJ, Rogers JG, Milano CA, Patel CB, Alexander KP, Hernandez AF. Assessing frailty in patients undergoing destination therapy left ventricular assist device: observations from interagency registry for mechanically assisted circulatory support. ASAIO J 2018; 64: 16–23.
    1. Molina EJ, Shah P, Kiernan MS, Cornwell WK 3rd, Copeland H, Takeda K, Fernandez FG, Badhwar V, Habib RH, Jacobs JP, Koehl D, Kirklin JK, Pagani FD, Cowger JA. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann Thorac Surg 2021; 111: 778–792 Epub 2021 Jan 16. PMID: 33465365.
    1. van Vugt J, Coebergh van den Braak R, Schippers H, Veen KM, Levolger S, de Bruin R, Koek M, Niessen WJ, IJzermans J, Willemsen F. Contrast‐enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography. Clin Nutr (Edinburgh, Scotland) 2018; 37: 1707–1714.

Source: PubMed

3
S'abonner