Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin-4 antibody levels

Su-Hyun Kim, Woojun Kim, So-Young Huh, Kyue Yim Lee, In Ja Jung, Ho Jin Kim, Su-Hyun Kim, Woojun Kim, So-Young Huh, Kyue Yim Lee, In Ja Jung, Ho Jin Kim

Abstract

Background and purpose: Although plasmapheresis is becoming standard practice as a rescue therapy for neuromyelitis optica (NMO), evidence for the therapeutic efficacy of plasmapheresis is limited, and the effect of plasmapheresis on anti-aquaporin-4 (AQP4) levels in patients with NMO has not been reported. Here, our objective was to evaluate the clinical efficacy of therapeutic plasmapheresis and its effect on anti-AQP4 antibody levels in patients with NMO spectrum disorder (NMOSD).

Methods: We retrospectively reviewed the medical records of 15 patients with NMOSD who had 18 acute attacks and received plasmapheresis because they did not respond to high-dose intravenous methylprednisolone (IVMP) therapy. Anti-AQP4 antibodies were measured before and after plasmapheresis. The primary outcomes were functional improvements immediately and 6 months after plasmapheresis, and the secondary outcome was the change in anti-AQP4 antibody serum levels following plasmapheresis.

Results: Plasmapheresis following IVMP therapy led to significant improvement in 50% of the 18 attacks in 15 patients immediately after the procedure was completed, and in 78% (14 attacks) after 6 months. Plasmapheresis was generally well tolerated in all patients. Anti-AQP4 antibody serum levels declined significantly following plasmapheresis, to a mean of 15% of the preplasmapheresis levels. Lower scores on the visual outcome scale recorded before an attack were associated with significant immediate improvement upon the completion of plasmapheresis (p=0.03).

Conclusions: Plasmapheresis following IVMP therapy effectively removed anti-AQP4 antibodies and was accompanied by a substantial improvement in the neurological disability of patients with NMOSD. Lower levels of pre-existing neurological damage may be associated with an improved acute response to plasmapheresis.

Keywords: anti-aquaporin-4 antibody; neuromyelitis optica; plasmapheresis.

Figures

Fig. 1
Fig. 1
Longitudinal titer (A) and cumulative reduction rate (B) of anti-aquaporin-4 (AQP4) antibodies before and after steroid therapy at each plasmapheresis session.

References

    1. Lehmann HC, Hartung HP, Hetzel GR, Stüve O, Kieseier BC. Plasma exchange in neuroimmunological disorders: Part 1: Rationale and treatment of inflammatory central nervous system disorders. Arch Neurol. 2006;63:930–935.
    1. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–2112.
    1. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain. 2010;133:349–361.
    1. Weinshenker BG, Wingerchuk DM, Vukusic S, Linbo L, Pittock SJ, Lucchinetti CF, et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol. 2006;59:566–569.
    1. Matiello M, Lennon VA, Jacob A, Pittock SJ, Lucchinetti CF, Wingerchuk DM, et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology. 2008;70:2197–2200.
    1. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66:617–629.
    1. Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66:630–643.
    1. Kim W, Kim SH, Kim HJ. New insights into neuromyelitis optica. J Clin Neurol. 2011;7:115–127.
    1. Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology. 2002;58:143–146.
    1. Llufriu S, Castillo J, Blanco Y, Ramió-Torrentà L, Río J, Vallès M, et al. Plasma exchange for acute attacks of CNS demyelination: Predictors of improvement at 6 months. Neurology. 2009;73:949–953.
    1. Magaña SM, Keegan BM, Weinshenker BG, Erickson BJ, Pittock SJ, Lennon VA, et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol. 2011;68:870–878.
    1. Watanabe S, Nakashima I, Misu T, Miyazawa I, Shiga Y, Fujihara K, et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler. 2007;13:128–132.
    1. Wang KC, Wang SJ, Lee CL, Chen SY, Tsai CP. The rescue effect of plasma exchange for neuromyelitis optica. J Clin Neurosci. 2011;18:43–46.
    1. Collongues N, de Seze J. Current and future treatment approaches for neuromyelitis optica. Ther Adv Neurol Disord. 2011;4:111–121.
    1. Sellner J, Boggild M, Clanet M, Hintzen RQ, Illes Z, Montalban X, et al. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur J Neurol. 2010;17:1019–1032.
    1. Szczepiorkowski ZM, Winters JL, Bandarenko N, Kim HC, Linenberger ML, Marques MB, et al. Guidelines on the use of therapeutic apheresis in clinical practice--evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010;25:83–177.
    1. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66:1485–1489.
    1. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–815.
    1. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic's syndrome) Neurology. 1999;53:1107–1114.
    1. Kim W, Lee JE, Li XF, Kim SH, Han BG, Lee BI, et al. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult Scler. 2012;18:578–586.
    1. Narita YM, Hirahara K, Mizukawa Y, Kano Y, Shiohara T. Efficacy of plasmapheresis for the treatment of severe toxic epidermal necrolysis: Is cytokine expression analysis useful in predicting its therapeutic efficacy? J Dermatol. 2011;38:236–245.
    1. Bonnan M, Valentino R, Olindo S, Mehdaoui H, Smadja D, Cabre P. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler. 2009;15:487–492.
    1. Brecher ME. Plasma exchange: why we do what we do. J Clin Apher. 2002;17:207–211.
    1. Bonnan M, Cabre P. Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int. 2012;2012:787630.
    1. Okafor C, Ward DM, Mokrzycki MH, Weinstein R, Clark P, Balogun RA. Introduction and overview of therapeutic apheresis. J Clin Apher. 2010;25:240–249.

Source: PubMed

3
S'abonner