Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

David J Clark, David J Clark

Abstract

Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, "automaticity" refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: (a) functional significance of automaticity; (b) neurophysiology of automaticity;

Keywords: automaticity; dual task; executive control; motor control; near infrared spectroscopy; rehabilitation; walking.

(c) measurement of automaticity; (d) mechanistic factors that compromise automaticity; and (e) strategies for rehabilitation of automaticity.

Figures

Figure 1
Figure 1
Mechanistic factors that compromise automaticity of walking. A variety of factors may contribute to a shift in the balance of locomotor control from automaticity to executive control. These include, but are not limited to central nervous system (CNS) damage/injury, proprioception impairment, tactile somatosensation impairment, visual impairment, excessive physical effort, pain, state anxiety, use of some assistive devices, biomechanical structural impairment and hearing impairment.

References

    1. Adkin A. L., Frank J. S., Carpenter M. G., Peysar G. W. (2002). Fear of falling modifies anticipatory postural control. Exp. Brain Res. 143, 160–170. 10.1007/s00221-001-0974-8
    1. af Klint R., Nielsen J. B., Cole J., Sinkjaer T., Grey M. J. (2008). Within-step modulation of leg muscle activity by afferent feedback in human walking. J. Physiol. 586, 4643–4648. 10.1113/jphysiol.2008.155002
    1. Alexander M. S., Lajoie K., Neima D. R., Strath R. A., Robinovitch S. N., Marigold D. S. (2014a). Effect of ambient light and age-related macular degeneration on precision walking. Optom. Vis. Sci. 91, 990–999. 10.1097/OPX.0000000000000316
    1. Alexander M. S., Lajoie K., Neima D. R., Strath R. A., Robinovitch S. N., Marigold D. S. (2014b). Effects of age-related macular degeneration and ambient light on curb negotiation. Optom. Vis. Sci. 91, 975–989. 10.1097/OPX.0000000000000286
    1. Andersson O., Grillner S. (1981). Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion”. Acta Physiol. Scand. 113, 89–101. 10.1111/j.1748-1716.1981.tb06867.x
    1. Atsumori H., Kiguchi M., Katura T., Funane T., Obata A., Sato H., et al. . (2010). Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system. J. Biomed. Opt. 15:046002. 10.1117/1.3462996
    1. Ayaz H., Cakir M. P., Izzetoglu K., Curtin A., Shewokis P. A., Bunce S. C., et al. (2012a). “Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging,” in Institute of Electrical and Electronics Engineers Aerospace Conference (Big Sky, MT).
    1. Ayaz H., Shewokis P. A., Bunce S., Izzetoglu K., Willems B., Onaral B. (2012b). Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59, 36–47. 10.1016/j.neuroimage.2011.06.023
    1. Bateni H., Maki B. E. (2005). Assistive devices for balance and mobility: benefits, demands and adverse consequences. Arch. Phys. Med. Rehabil. 86, 134–145. 10.1016/j.apmr.2004.04.023
    1. Bear M. F., Connors B. W., Paradiso M. A. (2007). Neuroscience: Exploring the Brain. 3rd Edn. Baltimore, MD and Philadelphia, PA: Lippincott Williams and Wilkins.
    1. Beauchet O., Annweiler C., Dubost V., Allali G., Kressig R. W., Bridenbaugh S., et al. . (2009). Stops walking when talking: a predictor of falls in older adults? Eur. J. Neurol. 16, 786–795. 10.1111/j.1468-1331.2009.02612.x
    1. Beauchet O., Berrut G. (2006). Gait and dual-task: definition, interest and perspectives in the elderly. Psychol. Neurophsychiatr. Vieil. 4, 215–225.
    1. Bhambhani Y., Maikala R., Farag M., Rowland G. (2006). Reliability of near-infrared spectroscopy measures of cerebral oxygenation and blood volume during handgrip exercise in nondisabled and traumatic brain-injured subjects. J. Rehabil. Res. Dev. 43, 845–856. 10.1682/jrrd.2005.09.0151
    1. Bragge T., Lyytinen T., Hakkarainen M., Vartiainen P., Liikavainio T., Karjalainen P. A., et al. . (2014). Lower impulsive loadings following intensive weight loss after bariatric surgery in level and stair walking: a preliminary study. Knee 21, 534–540. 10.1016/j.knee.2013.11.012
    1. Bregman D. J., van der Krogt M. M., de Groot V., Harlaar J., Wisse M., Collins S. H. (2011). The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin. Biomech. (Bristol, Avon) 26, 955–961. 10.1016/j.clinbiomech.2011.05.007
    1. Bridenbaugh S. A., Kressig R. W. (2011). Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology 57, 256–264. 10.1159/000322194
    1. Brown T. G. (1911). The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. B Biol. Sci. 84, 308–319 10.1098/rspb.1911.0077
    1. Brown L. A., Gage W. H., Polych M. A., Sleik R. J., Winder T. R. (2002). Central set influences on gait. Age-dependent effects of postural threat. Exp. Brain Res. 145, 286–296. 10.1007/s00221-002-1082-0
    1. Buchman A. S., Wilson R. S., Leurgans S., Bennett D. A. (2009). Vibratory thresholds and mobility in older persons. Muscle Nerve 39, 754–760. 10.1002/mus.21263
    1. Caliandro P., Masciullo M., Padua L., Simbolotti C., Di Sante G., Russo G., et al. . (2012). Prefrontal cortex controls human balance during overground ataxic gait. Restor. Neurol. Neurosci. 30, 397–405. 10.3233/RNN-2012-Y120239
    1. Carpenter M. G., Frank J. S., Adkin A. L., Paton A., Allum J. H. (2004). Influence of postural anxiety on postural reactions to multi-directional surface rotations. J. Neurophysiol. 92, 3255–3265. 10.1152/jn.01139.2003
    1. Cham R., Studenski S. A., Perera S., Bohnen N. I. (2008). Striatal dopaminergic denervation and gait in healthy adults. Exp. Brain Res. 185, 391–398. 10.1007/s00221-007-1161-3
    1. Chen D. S., Genther D. J., Betz J., Lin F. R. (2014). Association between hearing impairment and self-reported difficulty in physical functioning. J. Am. Geriatr. Soc. 62, 850–856. 10.1111/jgs.12800
    1. Clark D. J., Christou E. A., Ring S. A., Williamson J. B., Doty L. (2014a). Enhanced somatosensory feedback reduces prefrontal cortical activity during walking in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1422–1428. 10.1093/gerona/glu125
    1. Clark D. J., Kautz S. A., Bauer A. R., Chen Y. T., Christou E. A. (2013). Synchronous EMG activity in the piper frequency band reveals the corticospinal demand of walking tasks. Ann. Biomed. Eng. 41, 1778–1786. 10.1007/s10439-013-0832-4
    1. Clark D. J., Rose D. K., Ring S. A., Porges E. C. (2014b). Utilization of central nervous system resources for preparation and performance of complex walking tasks in older adults. Front. Aging Neurosci. 6:217. 10.3389/fnagi.2014.00217
    1. Clark D. J., Ting L. H., Zajac F. E., Neptune R. R., Kautz S. A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103, 844–857. 10.1152/jn.00825.2009
    1. Collins S., Ruina A., Tedrake R., Wisse M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085. 10.1126/science.1107799
    1. Cruz-Almeida Y., Black M. L., Christou E. A., Clark D. J. (2014). Site-specific differences in the association between plantar tactile perception and mobility function in older adults. Front. Aging Neurosci. 6:68. 10.3389/fnagi.2014.00068
    1. de Gier M., Peters M. L., Vlaeyen J. W. (2003). Fear of pain, physical performance and attentional processes in patients with fibromyalgia. Pain 104, 121–130. 10.1016/s0304-3959(02)00487-6
    1. del Olmo M. F., Cudeiro J. (2005). Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues. Parkinsonism Relat. Disord. 11, 25–33. 10.1016/j.parkreldis.2004.Y09.002
    1. Demura T., Demura S., Uchiyama M., Sugiura H. (2014). Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity and knee joint pain. J. Geriatr. Phys. Ther. 37, 52–57. 10.1519/jpt.0b013e318295daba
    1. Dennis A., Dawes H., Elsworth C., Collett J., Howells K., Wade D. T., et al. . (2009). Fast walking under cognitive-motor interference conditions in chronic stroke. Brain Res. 1287, 104–110. 10.1016/j.brainres.2009.06.023
    1. Derosière G., Alexandre F., Bourdillon N., Mandrick K., Ward T. E., Perrey S. (2014). Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neuroimage 85(Pt. 1), 471–477. 10.1016/j.neuroimage.2013.02.006
    1. Derosière G., Mandrick K., Dray G., Ward T. E., Perrey S. (2013). NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Front. Hum. Neurosci. 7:583. 10.3389/fnhum.2013.00583
    1. Deshpande N., Ferrucci L., Metter J., Faulkner K. A., Strotmeyer E., Satterfield S., et al. . (2008). Association of lower limb cutaneous sensitivity with gait speed in the elderly: the health ABC study. Am. J. Phys. Med. Rehabil. 87, 921–928. 10.1097/PHM.0b013e31818a5556
    1. Dietz V. (1996). Interaction between central programs and afferent input in the control of posture and locomotion. J. Biomech. 29, 841–844. 10.1016/0021-9290(95)00175-1
    1. Dietz V., Müller R., Colombo G. (2002). Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125, 2626–2634. 10.1093/brain/awf273
    1. Dimitrijevic M. R., Gerasimenko Y., Pinter M. M. (1998). Evidence for a spinal central pattern generator in humans. Ann. N Y Acad. Sci. 860, 360–376. 10.1111/j.1749-6632.1998.tb09062.x
    1. Dobkin B., Apple D., Barbeau H., Basso M., Behrman A., Deforge D., et al. . (2006). Weight-supported treadmill vs. over-ground training for walking after acute incomplete SCI. Neurology 66, 484–493. 10.1212/01.wnl.0000202600.72018.39
    1. Doi T., Makizako H., Shimada H., Park H., Tsutsumimoto K., Uemura K., et al. . (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin. Exp. Res. 25, 539–544. 10.1007/s40520-013-0119-5
    1. Dominici N., Ivanenko Y. P., Cappellini G., d’Avella A., Mondì V., Cicchese M., et al. . (2011). Locomotor primitives in newborn babies and their development. Science 334, 997–999. 10.1126/science.1210617
    1. Dommes A., Cavallo V., Dubuisson J. B., Tournier I., Vienne F. (2014). Crossing a two-way street: comparison of young and old pedestrians. J. Safety Res. 50, 27–34. 10.1016/j.jsr.2014.03.008
    1. Don R., Pierelli F., Ranavolo A., Serrao M., Mangone M., Paoloni M., et al. . (2008). Modulation of spinal inhibitory reflex responses to cutaneous nociceptive stimuli during upper limb movement. Eur. J. Neurosci. 28, 559–568. 10.1111/j.1460-9568.2008.06330.x
    1. Duckrow R. B., Abu-Hasaballah K., Whipple R., Wolfson L. (1999). Stance perturbation-evoked potentials in old people with poor gait and balance. Clin. Neurophysiol. 110, 2026–2032. 10.1016/s1388-2457(99)00195-9
    1. Duncan P. W., Sullivan K. J., Behrman A. L., Azen S. P., Wu S. S., Nadeau S. E., et al. . (2011). Body-weight-supported treadmill rehabilitation after stroke. N. Engl. J. Med. 364, 2026–2036. 10.1056/NEJMoa1010790
    1. Ely D. D., Smidt G. L. (1977). Effect of cane on variables of gait for patients with hip disorders. Phys. Ther. 57, 507–512.
    1. Fallon J. B., Bent L. R., McNulty P. A., Macefield V. G. (2005). Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J. Neurophysiol. 94, 3795–3804. 10.1152/jn.00359.2005
    1. Farina S., Tinazzi M., Le Pera D., Valeriani M. (2003). Pain-related modulation of the human motor cortex. Neurol. Res. 25, 130–142. 10.1179/016164103101201283
    1. Fasano A., Plotnik M., Bove F., Berardelli A. (2012). The neurobiology of falls. Neurol. Sci. 33, 1215–1223. 10.1007/s10072-012-1126-6
    1. Forssberg H. (1985). Ontogeny of human locomotor control. I. Infant stepping, supported locomotion and transition to independent locomotion. Exp. Brain Res. 57, 480–493. 10.1007/bf00237835
    1. Frigon A., Rossignol S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biol. Cybern. 95, 607–627. 10.1007/s00422-006-0129-x
    1. Gage W. H., Sleik R. J., Polych M. A., McKenzie N. C., Brown L. A. (2003). The allocation of attention during locomotion is altered by anxiety. Exp. Brain Res. 150, 385–394. 10.1007/s00221-003-1468-7
    1. Grillner S. (1981). “Control of locomotion in bipeds, tetrapods and fish,” in Handbook of Physiology, eds Brookhart J., Mountcastle V. (American Physiological Society; ), 1179–1236.
    1. Grillner S., Wallén P., Saitoh K., Kozlov A., Robertson B. (2008). Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res. Rev. 57, 2–12. 10.1016/j.brainresrev.2007.06.027
    1. Hadjistavropoulos T., Carleton R. N., Delbaere K., Barden J., Zwakhalen S., Fitzgerald B., et al. . (2012). The relationship of fear of falling and balance confidence with balance and dual tasking performance. Psychol. Aging 27, 1–13. 10.1037/a0024054
    1. Hallett M. (2008). The intrinsic and extrinsic aspects of freezing of gait. Mov. Disord. 23(Suppl. 2), S439–S443. 10.1002/mds.21836
    1. Harada T., Miyai I., Suzuki M., Kubota K. (2009). Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp. Brain Res. 193, 445–454. 10.1007/s00221-008-1643-y
    1. Harada H., Nashihara H., Morozumi K., Ota H., Hatakeyama E. (2007). A comparison of cerebral activity in the prefrontal region between young adults and the elderly while driving. J. Physiol. Anthropol. 26, 409–414. 10.2114/jpa2.26.409
    1. Harper N. G., Esposito E. R., Wilken J. M., Neptune R. R. (2014). The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clin. Biomech. (Bristol, Avon) 29, 877–884. 10.1016/j.clinbiomech.2014.07.005
    1. Hausdorff J. M., Lowenthal J., Herman T., Gruendlinger L., Peretz C., Giladi N. (2007). Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 26, 2369–2375. 10.1111/j.1460-9568.2007.05810.x
    1. Helbostad J. L., Vereijken B., Hesseberg K., Sletvold O. (2009). Altered vision destabilizes gait in older persons. Gait Posture 30, 233–238. 10.1016/j.gaitpost.2009.05.004
    1. Herrmann M. J., Walter A., Ehlis A. C., Fallgatter A. J. (2006). Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender. Neurobiol. Aging 27, 888–894. 10.1016/j.neurobiolaging.2005.04.013
    1. Hiebert G. W., Pearson K. G. (1999). Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. J. Neurophysiol. 81, 758–770.
    1. Hiebert G. W., Whelan P. J., Prochazka A., Pearson K. G. (1996). Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 75, 1126–1137.
    1. Holtzer R., Epstein N., Mahoney J. R., Izzetoglu M., Blumen H. M. (2014). Neuroimaging of mobility in aging: a targeted review. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1375–1388. 10.1093/gerona/glu052
    1. Holtzer R., Mahoney J. R., Izzetoglu M., Izzetoglu K., Onaral B., Verghese J. (2011). fNIRS study of walking and walking while talking in young and old individuals. J. Gerontol. A Biol. Sci. Med. Sci. 66, 879–887. 10.1093/gerona/glr068
    1. Horak F. B., Diener H. C. (1994). Cerebellar control of postural scaling and central set in stance. J. Neurophysiol. 72, 479–493.
    1. Hortobágyi T., Mizelle C., Beam S., Devita P. (2003). Old adults perform activities of daily living near their maximal capabilities. J. Gerontol. A Biol. Sci. Med. Sci. 58, M453–M460. 10.1093/gerona/58.5.m453
    1. Hyndman D., Ashburn A., Yardley L., Stack E. (2006). Interference between balance, gait and cognitive task performance among people with stroke living in the community. Disabil. Rehabil. 28, 849–856. 10.1080/09638280500534994
    1. Hyngstrom A., Onushko T., Chua M., Schmit B. D. (2010). Abnormal volitional hip torque phasing and hip impairments in gait post stroke. J. Neurophysiol. 103, 1557–1568. 10.1152/jn.00528.2009
    1. Ivanenko Y. P., Poppele R. E., Lacquaniti F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556, 267–282. 10.1113/jphysiol.2003.057174
    1. Jami L. (1992). Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol. Rev. 72, 623–666.
    1. Kadivar Z., Corcos D. M., Foto J., Hondzinski J. M. (2011). Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil. Neural Repair. 25, 626–635. 10.1177/1545968311401627
    1. Kaneko H., Yoshikawa T., Nomura K., Ito H., Yamauchi H., Ogura M., et al. . (2011). Hemodynamic changes in the prefrontal cortex during digit span task: a near-infrared spectroscopy study. Neuropsychobiology 63, 59–65. 10.1159/000323446
    1. Karttunen N., Lihavainen K., Sipila S., Rantanen T., Sulkava R., Hartikainen S. (2012). Musculoskeletal pain and use of analgesics in relation to mobility limitation among community-dwelling persons aged 75 years and older. Eur. J. Pain 16, 140–149. 10.1016/j.ejpain.2011.05.013
    1. Kasicki S., Korczyński R., Romaniuk J. R., Sławińska U. (1991). Two locomotor strips in the diencephalon of thalamic cats. Acta Neurobiol. Exp. (Wars) 51, 137–143.
    1. Kobayashi T., Leung A. K., Akazawa Y., Hutchins S. W. (2013). The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke. Gait Posture 37, 457–459. 10.1016/j.gaitpost.2012.07.028
    1. Koechlin E., Ody C., Kouneiher F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185. 10.1126/science.1088545
    1. Koenraadt K. L., Roelofsen E. G., Duysens J., Keijsers N. L. (2014). Cortical control of normal gait and precision stepping: an fNIRS study. Neuroimage 85(Pt. 1), 415–422. 10.1016/j.neuroimage.2013.04.070
    1. Kurz M. J., Wilson T. W., Arpin D. J. (2012). Stride-time variability and sensorimotor cortical activation during walking. Neuroimage 59, 1602–1607. 10.1016/j.neuroimage.2011.08.084
    1. Lam T., Pearson K. G. (2001). Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J. Neurophysiol. 86, 1321–1332.
    1. Lamarche L., Gammage K. L., Klentrou P., Adkin A. L. (2014). What will they think? The relationship between self-presentational concerns and balance and mobility outcomes in older women. Exp. Aging Res. 40, 426–435. 10.1080/0361073X.2014.926774
    1. Lamoth C. J., Stins J. F., Pont M., Kerckhoff F., Beek P. J. (2008). Effects of attention on the control of locomotion in individuals with chronic low back pain. J. Neuroeng. Rehabil. 5:13. 10.1186/1743-0003-5-13
    1. Leary M. R. (1995). Self Presentation: Impression Management and Interpersonal Behavior. Boulder, CO: Westview Press.
    1. Lee L. W., Zavarei K., Evans J., Lelas J. J., Riley P. O., Kerrigan D. C. (2005). Reduced hip extension in the elderly: dynamic or postural? Arch. Phys. Med. Rehabil. 86, 1851–1854. 10.1016/j.apmr.2005.03.008
    1. Le Pera D., Graven-Nielsen T., Valeriani M., Oliviero A., Di Lazzaro V., Tonali P. A., et al. . (2001). Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin. Neurophysiol. 112, 1633–1641. 10.1016/s1388-2457(01)00631-9
    1. Le Ray D., Juvin L., Ryczko D., Dubuc R. (2011). Chapter 4–supraspinal control of locomotion: the mesencephalic locomotor region. Prog. Brain Res. 188, 51–70. 10.1016/B978-0-444-53825-3.00009-7
    1. Lipsitz L. A., Lough M., Niemi J., Travison T., Howlett H., Manor B. (2015). A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch. Phys. Med. Rehabil. 96, 432–439. 10.1016/j.apmr.2014.10.004
    1. Maillet D., Rajah M. N. (2013). Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: a review. Ageing Res. Rev. 12, 479–489. 10.1016/j.arr.2012.11.001
    1. Mandrick K., Derosiere G., Dray G., Coulon D., Micallef J. P., Perrey S. (2013). Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study. Neurosci. Res. 76, 156–162. 10.1016/j.neures.2013.04.006
    1. Marsh B. C., Astill S. L., Utley A., Ichiyama R. M. (2011). Movement rehabilitation after spinal cord injuries: emerging concepts and future directions. Brain Res. Bull. 84, 327–336. 10.1016/j.brainresbull.2010.07.011
    1. McGeer T. (1993). Dynamics and control of bipedal locomotion. J. Theor. Biol. 163, 277–314. 10.1006/jtbi.1993.1121
    1. McVea D. A., Donelan J. M., Tachibana A., Pearson K. G. (2005). A role for hip position in initiating the swing-to-stance transition in walking cats. J. Neurophysiol. 94, 3497–3508. 10.1152/jn.00511.2005
    1. Meester D., Al-Yahya E., Dawes H., Martin-Fagg P., Pinon C. (2014). Associations between prefrontal cortex activation and H-reflex modulation during dual task gait. Front. Hum. Neurosci. 8:78. 10.3389/fnhum.2014.00078
    1. Mignardot J. B., Olivier I., Promayon E., Nougier V. (2010). Obesity impact on the attentional cost for controlling posture. PLoS One 5:e14387. 10.1371/journal.pone.0014387
    1. Mihara M., Miyai I., Hatakenaka M., Kubota K., Sakoda S. (2007). Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37, 1338–1345. 10.1016/j.neuroimage.2007.06.014
    1. Mold J. W., Vesely S. K., Keyl B. A., Schenk J. B., Roberts M. (2004). The prevalence, predictors and consequences of peripheral sensory neuropathy in older patients. J. Am. Board Fam. Pract. 17, 309–318. 10.3122/jabfm.17.5.309
    1. Mori S., Matsui T., Kuze B., Asanome M., Nakajima K., Matsuyama K. (1998). Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann. N Y Acad. Sci. 860, 94–105. 10.1111/j.1749-6632.1998.tb09041.x
    1. Morton S. M., Bastian A. J. (2004). Cerebellar control of balance and locomotion. Neuroscientist 10, 247–259. 10.1177/1073858404263517
    1. Morton S. M., Bastian A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J. Neurosci. 26, 9107–9116. 10.1523/jneurosci.2622-06.2006
    1. Narita K., Murata T., Honda K., Nishihara M., Takahashi M., Higuchi T. (2002). Subthalamic locomotor region is involved in running activity originating in the rat ventromedial hypothalamus. Behav. Brain Res. 134, 275–281. 10.1016/s0166-4328(02)00041-4
    1. Nielsen J. B. (2003). How we walk: central control of muscle activity during human walking. Neuroscientist 9, 195–204. 10.1177/1073858403009003012
    1. Nieuwboer A., Rochester L., Muncks L., Swinnen S. P. (2009). Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat. Disord. 15(Suppl. 3), S53–S58. 10.1016/s1353-8020(09)70781-3
    1. Novak A. C., Deshpande N. (2014). Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions. Hum. Mov. Sci. 35, 121–130. 10.1016/j.humov.2014.03.009
    1. Ohsugi H., Ohgi S., Shigemori K., Schneider E. B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neurosci. 14:10. 10.1186/1471-2202-14-10
    1. Ojha H. A., Kern R. W., Lin C. H., Winstein C. J. (2009). Age affects the attentional demands of stair ambulation: evidence from a dual-task approach. Phys. Ther. 89, 1080–1088. 10.2522/ptj.20080187
    1. Okamoto M., Dan H., Shimizu K., Takeo K., Amita T., Oda I., et al. . (2004). Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. Neuroimage 21, 1275–1288. 10.1016/j.neuroimage.2003.12.003
    1. Palluel E., Nougier V., Olivier I. (2008). Do spike insoles enhance postural stability and plantar-surface cutaneous sensitivity in the elderly? Age (Dordr). 30, 53–61. 10.1007/s11357-008-9047-2
    1. Palluel E., Olivier I., Nougier V. (2009). The lasting effects of spike insoles on postural control in the elderly. Behav. Neurosci. 123, 1141–1147. 10.1037/a0017115
    1. Panyakaew P., Bhidayasiri R. (2013). The spectrum of preclinical gait disorders in early Parkinson’s disease: subclinical gait abnormalities and compensatory mechanisms revealed with dual tasking. J. Neural Transm. 120, 1665–1672. 10.1007/s00702-013-1051-8
    1. Parasuraman R., Caggiano D. M. (2005). Neural and Genetic Assays of Human Mental Workload. Lanham, MD: Lexington Books.
    1. Patel P., Bhatt T. (2014). Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Top. Stroke Rehabil. 21, 347–357. 10.1310/tsr2104-347
    1. Paul S. S., Ada L., Canning C. G. (2005). Automaticity of walking - implications for physiotherapy practice. Phys. Ther. Rev. 10, 15–23 10.1179/108331905x43463
    1. Paul L., Ellis B. M., Leese G. P., Mcfadyen A. K., Mcmurray B. (2009). The effect of a cognitive or motor task on gait parameters of diabetic patients, with and without neuropathy. Diabet. Med. 26, 234–239. 10.1111/j.1464-5491.2008.02655.x
    1. Pearson K. G. (2008). Role of sensory feedback in the control of stance duration in walking cats. Brain Res. Rev. 57, 222–227. 10.1016/j.brainresrev.2007.06.014
    1. Perrey S. (2014). Possibilities for examining the neural control of gait in humans with fNIRS. Front. Physiol. 5:204. 10.3389/fphys.2014.00204
    1. Petersen N. T., Butler J. E., Marchand-Pauvert V., Fisher R., Ledebt A., Pyndt H. S., et al. . (2001). Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J. Physiol. 537, 651–656. 10.1111/j.1469-7793.2001.00651.x
    1. Petersen T. H., Willerslev-Olsen M., Conway B. A., Nielsen J. B. (2012). The motor cortex drives the muscles during walking in human subjects. J. Physiol. 590, 2443–2452. 10.1113/jphysiol.2012.227397
    1. Pieruccini-Faria F., Martens K. A., Silveira C., Jones J. A., Almeida Q. J. (2014). Interactions between cognitive and sensory load while planning and controlling complex gait adaptations in Parkinson inverted question marks disease. BMC Neurol. 14:250. 10.1186/s12883-014-0250-8
    1. Piper S. K., Krueger A., Koch S. P., Mehnert J., Habermehl C., Steinbrink J., et al. . (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85(Pt. 1), 64–71. 10.1016/j.neuroimage.2013.06.062
    1. Plotnik M., Giladi N., Hausdorff J. M. (2009). Bilateral coordination of gait and Parkinson’s disease: the effects of dual tasking. J. Neurol. Neurosurg. Psychiatry 80, 347–350. 10.1136/jnnp.2008.157362
    1. Plummer P., Eskes G., Wallace S., Giuffrida C., Fraas M., Campbell G., et al. . (2013). Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch. Phys. Med. Rehabil. 94, 2565–2574.e6. 10.1016/j.apmr.2013.08.002
    1. Plummer-D’Amato P., Altmann L. J. (2012). Relationships between motor function and gait-related dual-task interference after stroke: a pilot study. Gait Posture 35, 170–172. 10.1016/j.gaitpost.2011.08.015
    1. Priplata A. A., Niemi J. B., Harry J. D., Lipsitz L. A., Collins J. J. (2003). Vibrating insoles and balance control in elderly people. Lancet 362, 1123–1124. 10.1016/s0140-6736(03)14470-4
    1. Prochazka A. (1981). Muscle spindle function during normal movement. Int. Rev. Physiol. 25, 47–90.
    1. Qiu F., Cole M. H., Davids K. W., Hennig E. M., Silburn P. A., Netscher H., et al. . (2012). Enhanced somatosensory information decreases postural sway in older people. Gait Posture 35, 630–635. 10.1016/j.gaitpost.2011.12.013
    1. Resnick H. E., Vinik A. I., Schwartz A. V., Leveille S. G., Brancati F. L., Balfour J., et al. . (2000). Independent effects of peripheral nerve dysfunction on lower-extremity physical function in old age: the women’s health and aging study. Diabetes Care 23, 1642–1647. 10.2337/diacare.23.11.1642
    1. Rochester L., Baker K., Hetherington V., Jones D., Willems A. M., Kwakkel G., et al. . (2010). Evidence for motor learning in Parkinson’s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res. 1319, 103–111. 10.1016/j.brainres.2010.01.001
    1. Rodger M. W., Young W. R., Craig C. M. (2014). Synthesis of walking sounds for alleviating gait disturbances in Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 543–548. 10.1109/tnsre.2013.2285410
    1. Ryczko D., Dubuc R. (2013). The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470. 10.2174/1381612811319240011
    1. Schneider W., Chein J. M. (2003). Controlled and automatic processing: behavior, theory and biological mechanisms. Cogn. Sci. 27, 525–559 10.1207/s15516709cog2703_8
    1. Schneider W., Shiffrin R. M. (1977). Controlled and automatic human information processing. I. Detection, search and attention. Psychol. Rev. 84, 1–66 10.1037//0033-295x.84.1.1
    1. Seidler R. D., Bernard J. A., Burutolu T. B., Fling B. W., Gordon M. T., Gwin J. T., et al. . (2010). Motor control and aging: links to age-related brain structural, functional and biochemical effects. Neurosci. Biobehav. Rev. 34, 721–733. 10.1016/j.neubiorev.2009.10.005
    1. Sherafat S., Salavati M., Takamjani I. E., Akhbari B., Rad S. M., Mazaheri M., et al. . (2014). Effect of dual-tasking on dynamic postural control in individuals with and without nonspecific low back pain. J. Manipulative Physiol. Ther. 37, 170–179. 10.1016/j.jmpt.2014.02.003
    1. Sherrington C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex and reflex stepping and standing. J. Physiol. 40, 28–121. 10.1113/jphysiol.1910.sp001362
    1. Shibuya-Tayoshi S., Sumitani S., Kikuchi K., Tanaka T., Tayoshi S., Ueno S., et al. . (2007). Activation of the prefrontal cortex during the trail-making test detected with multichannel near-infrared spectroscopy. Psychiatry Clin. Neurosci. 61, 616–621. 10.1111/j.1440-1819.2007.01727.x
    1. Shiffrin R. M., Schneider W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190 10.1037//0033-295x.84.2.127
    1. Shimada H., Ishii K., Ishiwata K., Oda K., Suzukawa M., Makizako H., et al. . (2013). Gait adaptability and brain activity during unaccustomed treadmill walking in healthy elderly females. Gait Posture 38, 203–208. 10.1016/j.gaitpost.2012.11.008
    1. Shoushtarian M., Murphy A., Iansek R. (2011). Examination of central gait control mechanisms in Parkinson’s disease using movement-related potentials. Mov. Disord. 26, 2347–2353. 10.1002/mds.23844
    1. Sipko T., Kuczyński M. (2012). Intensity of chronic pain modifies postural control in low back patients. Eur. J. Pain [Epub ahead of print]. 10.1002/j.1532-2149.2012.00226.x
    1. Smulders K., van Swigchem R., de Swart B. J., Geurts A. C., Weerdesteyn V. (2012). Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles. Gait Posture 36, 127–132. 10.1016/j.gaitpost.2012.02.002
    1. Stevens J. A., Thomas K., Teh L., Greenspan A. I. (2009). Unintentional fall injuries associated with walkers and canes in older adults treated in U.S. emergency departments. J. Am. Geriatr. Soc. 57, 1464–1469. 10.1111/j.1532-5415.2009.02365.x
    1. Suhr J. A., Chelberg M. B. (2013). Use of near-infrared spectroscopy as a measure of cerebrovascular health in aging adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 20, 243–252. 10.1080/13825585.2012.727976
    1. Suzuki M., Miyai I., Ono T., Kubota K. (2008). Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39, 600–607. 10.1016/j.neuroimage.2007.08.044
    1. Suzuki M., Miyai I., Ono T., Oda I., Konishi I., Kochiyama T., et al. . (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23, 1020–1026. 10.1016/j.neuroimage.2004.07.002
    1. Svehlik M., Zwick E. B., Steinwender G., Linhart W. E., Schwingenschuh P., Katschnig P., et al. . (2009). Gait analysis in patients with Parkinson’s disease off dopaminergic therapy. Arch. Phys. Med. Rehabil. 90, 1880–1886. 10.1016/j.apmr.2009.06.017
    1. Swenor B. K., Muñoz B., West S. K. (2014). A longitudinal study of the association between visual impairment and mobility performance in older adults: the salisbury eye evaluation study. Am. J. Epidemiol. 179, 313–322. 10.1093/aje/kwt257
    1. Takahashi K. Z., Stanhope S. J. (2013). Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs. Gait Posture 38, 818–823. 10.1016/j.gaitpost.2013.04.002
    1. Turano K. A., Geruschat D. R., Stahl J. W. (1998). Mental effort required for walking: effects of retinitis pigmentosa. Optom. Vis. Sci. 75, 879–886.
    1. Van Daele U., Hagman F., Truijen S., Vorlat P., Van Gheluwe B., Vaes P. (2010). Decrease in postural sway and trunk stiffness during cognitive dual-task in nonspecific chronic low back pain patients, performance compared to healthy control subjects. Spine (Phila Pa 1976) 35, 583–589. 10.1097/brs.0b013e3181b4fe4d
    1. Verner M., Herrmann M. J., Troche S. J., Roebers C. M., Rammsayer T. H. (2013). Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach. Front. Hum. Neurosci. 7:217. 10.3389/fnhum.2013.00217
    1. Wellmon R., Pezzillo K., Eichhorn G., Lockhart W., Morris J. (2006). Changes in dual-task voice reaction time among elders who use assistive devices. J. Geriatr. Phys. Ther. 29, 74–80. 10.1519/00139143-200608000-00006
    1. Whittington B., Silder A., Heiderscheit B., Thelen D. G. (2008). The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture 27, 628–634. 10.1016/j.gaitpost.2007.08.005
    1. Wittwer J. E., Webster K. E., Hill K. (2013). Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson’s disease—what is the evidence? Disabil. Rehabil. 35, 164–176. 10.3109/09638288.2012.690495
    1. Wright D. L., Kemp T. L. (1992). The dual-task methodology and assessing the attentional demands of ambulation with walking devices. Phys. Ther. 72, 306–312; discussion 313–305.
    1. Yang J. F., Gorassini M. (2006). Spinal and brain control of human walking: implications for retraining of walking. Neuroscientist 12, 379–389. 10.1177/1073858406292151
    1. Yen S. C., Landry J. M., Wu M. (2014). Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury. Hum. Mov. Sci. 35, 80–93. 10.1016/j.humov.2014.03.006
    1. Zehr E. P., Stein R. B. (1999). What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58, 185–205. 10.1016/s0301-0082(98)00081-1
    1. Zelik K. E., Huang T. W., Adamczyk P. G., Kuo A. D. (2014). The role of series ankle elasticity in bipedal walking. J. Theor. Biol. 346, 75–85. 10.1016/j.jtbi.2013.12.014
    1. Zivotofsky A. Z., Gruendlinger L., Hausdorff J. M. (2012). Modality-specific communication enabling gait synchronization during over-ground side-by-side walking. Hum. Mov. Sci. 31, 1268–1285. 10.1016/j.humov.2012.01.003

Source: PubMed

3
S'abonner