PD-L1 expression, CD8+ and CD4+ lymphocyte rate are predictive of pathological complete response after neoadjuvant chemoradiotherapy for squamous cell cancer of the thoracic esophagus

Matteo Fassan, Francesco Cavallin, Vincenza Guzzardo, Andromachi Kotsafti, Melania Scarpa, Matteo Cagol, Vanna Chiarion-Sileni, Luca Maria Saadeh, Rita Alfieri, Ignazio Castagliuolo, Massimo Rugge, Carlo Castoro, Marco Scarpa, Matteo Fassan, Francesco Cavallin, Vincenza Guzzardo, Andromachi Kotsafti, Melania Scarpa, Matteo Cagol, Vanna Chiarion-Sileni, Luca Maria Saadeh, Rita Alfieri, Ignazio Castagliuolo, Massimo Rugge, Carlo Castoro, Marco Scarpa

Abstract

Background: Neoadjuvant chemoradiotherapy (CTRT) can effectively downstage esophageal squamous cell carcinoma (SCC) in patients with locally advanced disease and prolonged survival have been observed in patients with a pathological complete response (ypCR).

Aims and methods: This exploratory study aimed to identify immunological predictors of pCR after neoadjuvant CTRT within SCC microenvironment. The tumor regression after neoadjuvant therapy was measured according to the Mandard score system. Eighty-eight consecutive patients with SCC of the thoracic esophagus who received neoadjuvant CTRT were included in this retrospective study. Inclusion criteria were neoadjuvant CTRT and the availability of representative histological samples taken at diagnosis. We investigated immunohistochemical expression of CD4, Tbet, FoxP3, CD8, CD80, PD-L1, and PD-1, in the pretreatment biopsies and correlated the immunohistochemical profiles to patients' outcomes.

Results: After neoadjuvant CTRT, 23 patients had pCR, while 65 ones had partial response, stable disease or progression. PD-L1 expression and CD8+ and CD4+ lymphocyte rate were significantly higher in patients who had ypCR compared to those who had not (10 (0-55) vs 0 (0-0), P = 0.004, 73 (36-147) vs 21 (7-47), P = 0.0006 and 39 (23-74) vs 5 (0-13), P < 0.0001 respectively). The accuracy of expression of PD-L1+, CD8+, and CD4+ lymphocyte rate in identifying responders was AUC = 0.76 (P = 0.001), AUC = 0.81 (P = 0.0001) and AUC = 0.75 (P = 0.0001), respectively. Within the ypCR group, all patients with high infiltration of CD4+ T cell recurred/relapsed while only the 38.9% of those with low CD4+ T cell infiltration did the same (P = 0.058).

Conclusions: PD-L1 expression and CD8+ and CD4+ lymphocyte rate were predictive of ypCR after neoadjuvant CTRT for SCC of the thoracic esophagus with adequate accuracy. Furthermore, recurrence/relapse was associated with high level of CD4+ T cell infiltration. However, the small sample size prevented to draw definitive conclusions; further studies are necessary to evaluate the prognostic role of these markers.

Keywords: esophageal cancer; induction chemoradiotherapy; neoadjuvant therapy; squamous cell carcinoma; survival analysis.

Conflict of interest statement

None to declare.

© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Flowchart of included patients. Abbreviations: PPD: persistence or progressive disease (as opposed to yCR). SCC: esophageal squamous cell carcinoma.
Figure 2
Figure 2
Immunological predictors of clinical outcome after neoadjuvant CT‐RT in esophageal squamous cell carcinoma. PD‐L1, CD80, CD4, CD8 expression in yCR and yPPD tumors according to response to neoadjuvant therapy in the whole cohort (A) and in clinical stage III‐IV tumors treated with DDP ± 5FU (B). Data are shown as. Min‐Max error bars and Mann‐Whitney test was used for the comparison. (C) Representative examples of immunohistochemical stainings of PD‐L1, CD4 and CD8 according to tumor responsiveness to neoadjuvant therapy (original magnifications 20×, scale bar = 100 µm).
Figure 3
Figure 3
(A) ROC curves for yCR or *yPPD after neoadjuvant therapy; (B) ROC curves for FoxP3 and Tbet as predictor of yCR after neoadjuvant therapy. The accuracy of immunological markers as predictors of yCR was tested in the subgroup of patients with the ROC curve analysis.
Figure 4
Figure 4
Tumor immune infiltrate as predictor of overall survival. The Kaplan‐Meier estimate was used to perform the survival analysis from the date of the initial diagnosis and the log‐rank test was used to compare the subgroup survival.

References

    1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.
    1. Refaely Y, Krasna MJ. Multimodality therapy for esophageal cancer. Surg Clin North Am. 2002;82:729–746.
    1. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349(23):2241–2252.
    1. Wu PC, Posner MC. The role of surgery in the management of oesophageal cancer. Lancet Oncol. 2003;4:481–488.
    1. Viklund P, Lindblad M, Lu M, Ye W, Johansson J, Lagergren J. Risk factors for complications after esophageal cancer resection: a prospective population‐based study in Sweden. Ann Surg. 2006;243:204–211.
    1. Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta‐analysis. Lancet Oncol. 2007;8(3):226–234.
    1. Shapiro J, van Lanschot JJB, Hulshof MCCM, van Hagen P, van Berge Henegouwen MI, Wijnhoven BPL, et al.; CROSS study group . Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long‐term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090–1098. 10.1016/S1470-2045(15)00040-6.
    1. Mariette C, Triboulet JP. Is preoperative chemoradiation effective in treatment of oesophageal carcinoma? Lancet Oncol. 2005;6:635–637.
    1. Mariette C, Piessen G, Lamblin A, Mirabel X, Adenis A, Triboulet JP. Impact of preoperative radiochemotherapy on postoperative course and survival in patients with locally advanced squamous cell oesophageal carcinoma. Br J Surg. 2006;93:1077–1083.
    1. Malaisrie SC, Untch B, Aranha GV, et al. Neoadjuvant chemoradiotherapy for locally advanced esophageal cancer Experience at a single institution. Arch Surg. 2004;139:532–539.
    1. Reynolds JV, Muldoon C, Hollywood D, Ravi N, Rowley S, O'Byrne K, et al. Long‐term outcomes following neoadjuvant chemoradiotherapy for esophageal cancer. Ann Surg. 2007;245:707–716.
    1. Zacherl J, Sendler A, Stein HJ, Ott K, Feith M, Jakesz R, et al. Current status of neoadjuvant therapy for adenocarcinoma of the distal esophagus. World J Surg. 2003;27(9):1067–1074.
    1. Brücher B, Stein HJ, Zimmermann F, Werner M, Sarbia M, Busch R, et al. Responders benefit from neoadjuvant radiochemotherapy in esophageal squamous cell carcinoma: results of a prospective phase‐II trial. Eur J Surg Oncol. 2004;30(9):963–971.
    1. Berger AC, Farma J, Scott WJ, Freedman G, Weiner L, Cheng JD, et al. Complete response to neoadjuvant chemoradiotherapy in esophageal carcinoma is associated with significantly improved survival. J Clin Oncol. 2005;23:4330–4337.
    1. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–2084.
    1. Burmeister BH, Dickie G, Smithers BM, Hodge R, Morton K. Thirty‐four patients with carcinoma of the cervical esophagus treated with chemoradiation therapy. Arch Otolaryngol Head Neck Surg. 2000;126:205–208.
    1. Huang SH, Lockwood G, Brierley J, Cummings B, Kim J, Wong R, et al. Effect of concurrent high‐dose cisplatin chemotherapy and conformal radiotherapy on cervical esophageal cancer survival. Int J Radiation Oncology Biol Phys. 2008;71(3):735–740.
    1. Murakami M, Kuroda Y, Okamoto Y, et al. Neoadjuvant concurrent chemoradiotherapy followed by definitive high dose radiotherapy or surgery for operable esophageal carcinoma. Int J Radiat Oncol Biol Phys. 1998;40:(5)1049–059.
    1. Kim JH, Choi EK, Kim SB, et al. Preoperative hyperfractioned radiotherapy with concurrent chemotehrepay in resectable esophageal cancer. Int J Radiat Oncol Biol Phys. 2001;50(1):1–12.
    1. Lin C‐C, Hsu C‐H, Cheng J, Wang H‐P, Lee J‐M, Yeh K‐H, et al. Concurrent chemoradiotherapy with twice weekly paclitaxel and cisplatin followed by esophagectomy for locally advanced esophageal cancer. Ann Oncol. 2007;18:93–98.
    1. Aoyama N, Koizumi H, Minamide J, Yoneyama K, Isono K. Prognosis of patients with advanced carcinoma of the esophagus with complete response to chemotherapy and/or radiation therapy: a questionnaire survey in Japan. Int J Clin Oncol. 2001;6:132–137.
    1. Stahl M, Stuschke M, Lehmann N, Meyer H‐J, Walz MK, Seeber S, et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23:2310–2317.
    1. Bedenne L, Michel P, Bouche O, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cell carcinoma of the esophagus. J Clin Oncol. 2007;25(120):1160.
    1. Castoro C, Scarpa M, Cagol M, Alfieri R, Ruol A, Cavallin F, et al. Complete clinical response after neoadjuvant chemoradiotherapy for squamous cell cancer of the thoracic oesophagus: is surgery always necessary? J Gastrointest Surg. 2013;17(8):1375–1381.
    1. Pagès F, Berger A, Camus M, Sanchez‐Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005; 353(25):2654–2666.
    1. Galon J, Costes A, Sanchez‐Cabo F, Kirilovsky A, Mlecnik B, Lagorce‐Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–1964.
    1. Yang WF, et al. Expression of CD80, CD86, TGF‐beta1 and IL‐10 mRNA in the esophageal carcinoma. Zhonghua Zhong Liu Za Zhi. 2006;28(10):762–765.
    1. Yang W, Zhang Y, Yu J, Li S. The low expression of CD80 correlated with the vascular endothelial growth factor in esophageal cancer tissue. Eur J Surg Oncol. 2010;36(5):501–506.
    1. Ichiki Y, Hanagiri T, Takenoyama M, Baba T, Nagata Y, Mizukami M, et al. Differences in sensitivity to tumor‐specific CTLs between primary and metastatic esophageal cancer cell lines derived from the same patient. Surg Today. 2012;42(3):272–279.
    1. Lu B, Chen L, Liu L, Zhu Y, Wu C, Jiang J, et al. T‐cell‐mediated tumor immune surveillance and expression of B7 co‐inhibitory molecules in cancers of the upper gastrointestinal tract. Immunol Res. 2015;50(2–3):269–275. 10.1007/s12026-011-8227-9.
    1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–148.
    1. Li Y, Lu Z, Che Y, Wang J, Sun S, Huang J, et al. Immune signature profiling identified predictive and prognostic factors for esophageal squamous cell carcinoma. Oncoimmunology. 2017;6(11):e1356147 10.1080/2162402X.2017.1356147.
    1. Thar Min AK, Okayama H, Saito M, Ashizawa M, Aoto K, Nakajima T, et al. Epithelial‐mesenchymal transition‐converted tumor cells can induce T‐cell apoptosis through upregulation of programmed death ligand expression in esophageal squamous cell carcinoma. Cancer Med. 2018; 10.1002/cam4.1564.
    1. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93(4):387–391.
    1. Edge SB, Byrd DR, Compton CC, et al. (Eds.) AJCC cancer staging manual (7th edn). New York: Springer; 2009.
    1. Tahara M, Ohtsu A, Hironaka S, Boku N, Ishikura S, Miyata Y, et al. Clinical impact of criteria for complete response (CR) of primary site to treatment of esophageal cancer. Jpn J Clin Oncol. 2005;35:316–323.
    1. Japan Esophageal Society . Japanese classification of esophageal cancer (10th edn). Tokyo: Kanehara; 2008.
    1. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92:205–216.
    1. Mandard AM, Dalibard F, Mandard JC, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinico‐pathologic correlations. Cancer. 1994;73:2680–2686. 10.1002/1097-0142(19940601)73:11<2680.
    1. Valentini AM, Di Pinto F, Cariola F, Guerra V, Giannelli G, Caruso ML, Pirrelli M. PD‐L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments. Oncotarget. 2018;9(9):8584–8596.
    1. Ng HY, Li J, Tao L, Lam AK, Chan KW, Ko J, et al. Chemotherapeutic treatments increase PD‐L1 expression in esophageal squamous cell carcinoma through EGFR/ERK activation. Transl Oncol. 2018;11(6):1323–1333.
    1. Wang Y, Zhu C, Song W, Li J, Zhao G, Cao H. PD‐L1 expression and CD8(+) T cell infiltration predict a favorable prognosis in advanced gastric cancer. J Immunol Res. 2018;29(2018):4180517 10.1155/2018/4180517.
    1. Hirsch FR, Varella‐Garcia M, Bunn PA, Di Maria MV, Veve R, Bremnes RM, et al. Epidermal growth factor receptor in non‐small‐cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–3807.
    1. Igarashi T, Teramoto K, Ishida M, Hanaoka J, Daigo Y. Scoring of PD‐L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open. 2016;1:e000083 10.1136/esmoopen-2016-000083.
    1. Tsuchikawa T, Ikeda H, Cho Y, Miyamoto M, Shichinohe T, Hirano S, et al. Association of CD8+ T cell infiltration in oesophageal carcinoma lesions with human leucocyte antigen (HLA) class I antigen expression and survival. Clin Exp Immunol. 2011;164(1):50–56. 10.1111/j.1365-2249.2010.04311.x.
    1. Lv L, Pan K, Li XD, She KL, Zhao JJ, Wang W, et al. The accumulation and prognosis value of tumor infiltrating IL‐17 producing cells in esophageal squamous cell carcinoma. PLoS ONE. 2011;6(3):e18219 10.1371/journal.pone.0018219.
    1. Hatogai K, Kitano S, Fujii S, Kojima T, Daiko H, Nomura S, Yoshino T, Ohtsu A, Takiguchi Y, Doi T, Ochiai A. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma. Oncotarget. 2016. ;7(30):47252‐47264.10.18632/oncotarget.10055
    1. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63(7):1555–1559.
    1. Wang G, Sun Y, Ji C, He Y, Hu C, Jiang F, et al. Correlation between the CD4+CD25 high regulatory T cells and the outcome of chemotherapy in advanced esophageal carcinoma. Hepatogastroenterology. 2013;60(124):704–708.
    1. Tanaka Y, Aoyagi K, Minashi K, Komatsuzaki R, Komatsu M, Chiwaki F, et al. Discovery of a good responder subtype of esophageal squamous cell carcinoma with cytotoxic T‐lymphocyte signatures activated by chemoradiotherapy. PLoS ONE. 2015;10(12):e0143804 10.1371/journal.pone.0143804.
    1. Tsuchikawa T, Md MM, Yamamura Y, Shichinohe T, Hirano S, Kondo S. The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment ofesophageal squamous cell carcinoma. Ann Surg Oncol. 2012;19(5):1713–1719. 10.1245/s10434-011-1906-x.
    1. Jiang Y, Lo AWI, Wong A, Chen W, Wang Y, Lin LI, et al. Prognostic significance of tumor‐infiltrating immune cells and PD‐L1 expression in esophageal squamous cell carcinoma. Oncotarget. 2017;8(18):30175–30189. 10.18632/oncotarget.15621.
    1. Tsutsumi S, Saeki H, Nakashima Y, Ito S, Oki E, Morita M, et al. Programmed death‐ligand 1 expression at tumor invasive front is associated with epithelial‐mesenchymal transition and poor prognosis in esophageal squamous cell carcinoma. Cancer Sci. 2017;108(6):1119–1127. 10.1111/cas.13237.
    1. Zhu Y, Li M, Mu D, Kong L, Zhang J, Zhao F, et al. CD8+/FOXP3+ ratio and PD‐L1 expression associated with survival in pT3N0M0 stage esophageal squamous cell cancer. Oncotarget. 2016;7(44):71455–71465. 10.18632/oncotarget.12213.
    1. Wakita A, Motoyama S, Nanjo H, Sato Y, Yoshino K, Sasaki T, Kawakita Y, Liu J, Imai K, Saito H, Minamiya Y. PD‐L1 expression is a prognostic factor in patients with thoracic esophageal cancer treated without adjuvant chemotherapy. Anticancer Res. 2017;37(3):1433–1441.
    1. Zhang W, Pang Q, Zhang X, Yan C, Wang Q, Yang J, et al. Programmed death‐ligand 1 is prognostic factor in esophageal squamous cell carcinoma and is associated with epidermal growth factor receptor. Cancer Sci. 2017;108(4):590–597. 10.1111/cas.13197
    1. Hatogai K, Kitano S, Fujii S, Kojima T, Daiko H, Nomura S, Yoshino T, Ohtsu A, Takiguchi Y, Doi T, Ochiai A. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma. Oncotarget. 2016;7(30):47252‐47264.
    1. Chen K, Cheng G, Zhang F, Zhang N, Li D, Jin J, et al. Prognostic significance of programmed death‐1 and programmed death‐ligand 1 expression in patients with esophageal squamous cell carcinoma. Oncotarget. 2016;7(21):30772–30780. 10.18632/oncotarget.8956.
    1. Van DerKraak L, Goel G, Ramanan K, Kaltenmeier C, Zhang L, Normolle DP, Freeman GJ, Tang D, Nason KS, Davison JM, Luketich JD, Dhupar R, Lotze MT. 5‐Fluorouracil upregulates cell surface B7–H1 (PD‐L1) expression in gastrointestinal cancers. J Immunother Cancer. 2016;4(1)65.
    1. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD‐1 blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–1986. 10.1056/NEJMoa1716078.
    1. Chaft JE, Hellmann MD, Velez MJ, Travis WD, Rusch VW. Initial experience with lung cancer resection after treatment with T‐Cell checkpoint inhibitors. Ann Thorac Surg. 2017;104(3):e217–e218. 10.1016/j.athoracsur.2017.03.038.
    1. Luc G, Gronnier C, Lebreton G, Brigand C, Mabrut JY, Bail JP, et al. Predictive factors of recurrence in patients with pathological complete response after esophagectomy following neoadjuvant chemoradiotherapy for esophageal cancer: a multicenter study. Ann Surg Oncol. 2015;22(Suppl 3):S1357–S1364. 10.1245/s10434-015-4619-8.

Source: PubMed

3
S'abonner