Noninvasive prenatal diagnosis of genetic diseases induced by triplet repeat expansion by linked read haplotyping and Bayesian approach

C Liautard-Haag, G Durif, C VanGoethem, D Baux, A Louis, L Cayrefourcq, M Lamairia, M Willems, C Zordan, V Dorian, C Rooryck, C Goizet, A Chaussenot, L Monteil, P Calvas, C Miry, R Favre, E Le Boette, M Fradin, A F Roux, M Cossée, M Koenig, C Alix-Panabière, C Guissart, M C Vincent, C Liautard-Haag, G Durif, C VanGoethem, D Baux, A Louis, L Cayrefourcq, M Lamairia, M Willems, C Zordan, V Dorian, C Rooryck, C Goizet, A Chaussenot, L Monteil, P Calvas, C Miry, R Favre, E Le Boette, M Fradin, A F Roux, M Cossée, M Koenig, C Alix-Panabière, C Guissart, M C Vincent

Abstract

The field of noninvasive prenatal diagnosis (NIPD) has undergone significant progress over the last decade. Direct haplotyping has been successfully applied for NIPD of few single-gene disorders. However, technical issues remain for triplet-repeat expansions. The objective of this study was to develop an NIPD approach for couples at risk of transmitting dynamic mutations. This method includes targeted enrichment for linked-read libraries and targeted maternal plasma DNA sequencing. We also developed an innovative Bayesian procedure to integrate the Hoobari fetal genotyping model for inferring the fetal haplotype and the targeted gene variant status. Our method of directly resolving parental haplotypes through targeted linked-read sequencing was smoothly performed using blood samples from families with Huntington's disease or myotonic dystrophy type 1. The Bayesian analysis of transmission of parental haplotypes allowed defining the genotype of five fetuses. The predicted variant status of four of these fetuses was in agreement with the invasive prenatal diagnosis findings. Conversely, no conclusive result was obtained for the NIPD of fragile X syndrome. Although improvements should be made to achieve clinically acceptable accuracy, our study shows that linked-read sequencing and parental haplotype phasing can be successfully used for NIPD of triplet-repeat expansion diseases.Trial registration: NCT04698551_date of first registration: 07/01/2021.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flow chart of the overall strategy for noninvasive prenatal diagnosis of triplet-repeat expansions.
Figure 2
Figure 2
Different steps of the bioinformatic pipelines used in our study. The third step is a modified Hoobari pipeline for noninvasive prenatal genotyping.

References

    1. Drury, S., Hill, M. & Chitty, L. S. Cell-free fetal DNA testing for prenatal diagnosis. In Advances in Clinical Chemistry, 1–35 (Elsevier, 2016) (Accessed 28 Oct 2021).
    1. Mellis R, Chandler N, Chitty LS. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev. Mol. Diagn. 2018;18(8):689–699. doi: 10.1080/14737159.2018.1493924.
    1. Hui, L. Noninvasive approaches to prenatal diagnosis: historical perspective and future directions. In Prenatal Diagnosis. Methods in Molecular Biology, Vol. 1885, (ed Levy, B.) 45‑58 (Springer New York, 2019) (Accessed 28 Oct 2021) 10.1007/978-1-4939-8889-1_3.
    1. Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: A systematic review. Obstet. Gynecol. 2007;110(3):687–694. doi: 10.1097/01.AOG.0000278820.54029.e3.
    1. Hui WWI, Jiang P, Tong YK, Lee W-S, Cheng YKY, New MI, et al. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin. Chem. 2017;63(2):513–524. doi: 10.1373/clinchem.2016.268375.
    1. Vermeulen C, Geeven G, de Wit E, Verstegen MJAM, Jansen RPM, van Kranenburg M, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am. J. Hum. Genet. 2017;101(3):326–339. doi: 10.1016/j.ajhg.2017.07.012.
    1. Lee J-S, Lee KB, Song H, Sun C, Kim MJ, Cho SI, et al. Noninvasive prenatal test of single-gene disorders by linked-read direct haplotyping: Application in various diseases. Eur. J. Hum. Genet. 2021;29(3):463–470. doi: 10.1038/s41431-020-00759-9.
    1. Scotchman E, Chandler NJ, Mellis R, Chitty LS. Noninvasive prenatal diagnosis of single-gene diseases: The next frontier. Clin. Chem. 2020;66(1):53–60. doi: 10.1373/clinchem.2019.304238.
    1. Depienne C, Mandel J-L. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am. J. Hum. Genet. 2021;108(5):764–785. doi: 10.1016/j.ajhg.2021.03.011.
    1. Lee J-S, Lee KB, Song H, Sun C, Kim MJ, Cho SI, et al. Direct haplotyping-based noninvasive prenatal test for myotonic dystrophy type 1 with large CTG expansion. Clin. Chem. 2020;66(4):614–615. doi: 10.1093/clinchem/hvaa025.
    1. Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G, Raff C, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res. 2019;29(3):428–438. doi: 10.1101/gr.235796.118.
    1. Peng X, Jiang P. Bioinformatics approaches for fetal DNA fraction estimation in noninvasive prenatal testing. Int. J. Mol. Sci. 2017;18(2):453. doi: 10.3390/ijms18020453.
    1. Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: What clinicians need to know. Prenat. Diagn. 2020;40(2):155–163. doi: 10.1002/pd.5620.
    1. Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang P, Lun FMF, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2010 doi: 10.1126/scitranslmed.3001720.
    1. Andrieu C, Andrieu C, De Freitas N, Doucet A, Jordan MI. An introduction to MCMC for machine learning. Mach. Learn. 2003;50:5–43. doi: 10.1023/A:1020281327116.
    1. Chan LL, Jiang P. Bioinformatics analysis of circulating cell-free DNA sequencing data. Clin. Biochem. 2015;48(15):962–975. doi: 10.1016/j.clinbiochem.2015.04.022.
    1. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984;6(6):721–741. doi: 10.1109/TPAMI.1984.4767596.
    1. Chen M, Chen C, Huang X, Sun J, Jiang L, Li Y, et al. Noninvasive prenatal diagnosis for Duchenne muscular dystrophy based on the direct haplotype phasing. Prenat. Diagn. 2020;40(8):918–924. doi: 10.1002/pd.5641.
    1. Jang SS, Lim BC, Yoo S-K, Shin J-Y, Kim K-J, Seo J-S, et al. Targeted linked-read sequencing for direct haplotype phasing of maternal DMD alleles: A practical and reliable method for noninvasive prenatal diagnosis. Sci. Rep. 2018;8(1):8678. doi: 10.1038/s41598-018-26941-0.
    1. Bustamante-Aragonés A, Rodríguez de Alba M, Perlado S, Trujillo-Tiebas MJ, Arranz JP, Díaz-Recasens J, et al. Non-invasive prenatal diagnosis of single-gene disorders from maternal blood. Gene. 2012;504(1):144–149. doi: 10.1016/j.gene.2012.04.045.
    1. van den Oever JME, Bijlsma EK, Feenstra I, Muntjewerff N, Mathijssen IB, Bakker E, et al. Noninvasive prenatal diagnosis of Huntington disease: Detection of the paternally inherited expanded CAG repeat in maternal plasma: NIPD for Huntington disease. Prenat. Diagn. 2015;35(10):945–949. doi: 10.1002/pd.4593.
    1. Yu SCY, Jiang P, Peng W, Cheng SH, Cheung YTT, Tse OYO, et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc. Natl. Acad. Sci. 2021;118(50):e2114937118. doi: 10.1073/pnas.2114937118.

Source: PubMed

3
S'abonner