Pathological Methods Applied to the Investigation of Causes of Death in Developing Countries: Minimally Invasive Autopsy Approach

Paola Castillo, Esperança Ussene, Mamudo R Ismail, Dercio Jordao, Lucilia Lovane, Carla Carrilho, Cesaltina Lorenzoni, Marcus V Lacerda, Antonio Palhares, Leonardo Rodríguez-Carunchio, Miguel J Martínez, Jordi Vila, Quique Bassat, Clara Menéndez, Jaume Ordi, Paola Castillo, Esperança Ussene, Mamudo R Ismail, Dercio Jordao, Lucilia Lovane, Carla Carrilho, Cesaltina Lorenzoni, Marcus V Lacerda, Antonio Palhares, Leonardo Rodríguez-Carunchio, Miguel J Martínez, Jordi Vila, Quique Bassat, Clara Menéndez, Jaume Ordi

Abstract

Background and aims: Complete diagnostic autopsies (CDA) remain the gold standard in the determination of cause of death (CoD). However, performing CDAs in developing countries is challenging due to limited facilities and human resources, and poor acceptability. We aimed to develop and test a simplified minimally invasive autopsy (MIA) procedure involving organ-directed sampling with microbiology and pathology analyses implementable by trained technicians in low- income settings.

Methods: A standardized scheme for the MIA has been developed and tested in a series of 30 autopsies performed at the Maputo Central Hospital, Mozambique. The procedure involves the collection of 20 mL of blood and cerebrospinal fluid (CSF) and puncture of liver, lungs, heart, spleen, kidneys, bone marrow and brain in all cases plus uterus in women of childbearing age, using biopsy needles.

Results: The sampling success ranged from 67% for the kidney to 100% for blood, CSF, lung, liver and brain. The amount of tissue obtained in the procedure varied from less than 10 mm2 for the lung, spleen and kidney, to over 35 mm2 for the liver and brain. A CoD was identified in the histological and/or the microbiological analysis in 83% of the MIAs.

Conclusions: A simplified MIA technique allows obtaining adequate material from body fluids and major organs leading to accurate diagnoses. This procedure could improve the determination of CoD in developing countries.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Procedures for the collection of…
Fig 1. Procedures for the collection of cerebrospinal fluid (A), peripheral blood (B), liver (C), lung (D), spleen (E), and the central nervous system biopsy (F) (designed by Xabier Sagasta).
Fig 2. Representative image of the samples…
Fig 2. Representative image of the samples obtained from the central nervous system (A), liver (B), bone marrow (C) and lungs/heart and kidney (D) in the minimally invasive autopsy procedure.
Fig 3. Median area of tissue for…
Fig 3. Median area of tissue for histological evaluation obtained from each organ in mm2.
Fig 4. Representative examples of putative causes…
Fig 4. Representative examples of putative causes of death identified with minimally invasive autopsy sampling.
A) Meningoencephalitis (hematoxylin and eosin, 200x); B) Pneumocysttis jiroveci pneumonia (hematoxylin and eosin, 200x); C) Cryptococcus neoformans infecting the lung (PAS metenamine silver stain, 200x); D) Kaposi’s sarcoma involving the lung (hematoxylin and eosin, 100x).

References

    1. Fligner CL, Murray J, Roberts DJ. Synergism of verbal autopsy and diagnostic pathology autopsy for improved accuracy of mortality data. Popul Health Metr. 2011;9:25 10.1186/1478-7954-9-25: 25–29.
    1. Kuijpers CC, Fronczek J, van de Goot FR, Niessen HW, van Diest PJ, Jiwa M. The value of autopsies in the era of high-tech medicine: discrepant findings persist. J Clin Pathol. 2014;10–202122.
    1. Lishimpi K, Chintu C, Lucas S, Mudenda V, Kaluwaji J, Story A, et al. Necropsies in African children: consent dilemmas for parents and guardians. Arch Dis Child. 2001;84:463–467.
    1. Ugiagbe EE, Osifo OD. Postmortem examinations on deceased neonates: a rarely utilized procedure in an African referral center. Pediatr Dev Pathol. 2012;15:1–4.
    1. Butler D. Verbal autopsy methods questioned. Nature. 2010;467:1015.
    1. Byass P. Usefulness of the Population Health Metrics Research Consortium gold standard verbal autopsy data for general verbal autopsy methods. BMC Med. 2014;12:23.
    1. Garenne M. Prospects for automated diagnosis of verbal autopsies. BMC Med. 2014;12:18.
    1. Jha P. Reliable direct measurement of causes of death in low- and middle-income countries. BMC Med. 2014;12:19.
    1. Hogan MC, Foreman KJ, Naghavi M, Ahn SY, Wang M, Makela SM, et al. Maternal mortality for 181 countries, 1980–2008: a systematic analysis of progress towards Millennium Development Goal 5. Lancet. 2010;375:1609–1623.
    1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D,et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–431.
    1. Weustink AC, Hunink MG, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology. 2009;250:897–904.
    1. Milner DA Jr, Dzamalala CP, Liomba NG, Molyneux ME, Taylor TE. Sampling of supraorbital brain tissue after death: improving on the clinical diagnosis of cerebral malaria. J Infect Dis. 2005;191:805–808.
    1. Celiloglu OS, Celiloglu C, Kurnaz E, Ozdemir R, Karadag A. Diagnostic contribution of postmortem needle biopsies in neonates. Turk Patoloji Derg. 2013;29:122–126. 10.5146/tjpath.2013.01162
    1. El-Reshaid W, El-Reshaid K, Madda J. Postmortem biopsies: the experience in Kuwait. Med Princ Pract. 2005;14:173–176.
    1. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155:395–410.
    1. Turner GD, Bunthi C, Wonodi CB, Morpeth SC, Molyneux CS, Zaki SR, et al. The role of postmortem studies in pneumonia etiology research. Clin Infect Dis. 2012;54 Suppl 2:S165–S171. 10.1093/cid/cir1062
    1. Breeze AC, Jessop FA, Whitehead AL, Set PA, Berman L, Hackett GA, et al. Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy. Virchows Arch. 2008;452:201–207.
    1. Sebire NJ, Weber MA, Thayyil S, Mushtaq I, Taylor A, Chitty LS. Minimally invasive perinatal autopsies using magnetic resonance imaging and endoscopic postmortem examination ("keyhole autopsy"): feasibility and initial experience. J Matern Fetal Neonatal Med. 2012;25:513–518.
    1. Thayyil S, Chitty LS, Robertson NJ, Taylor AM, Sebire NJ. Minimally invasive fetal postmortem examination using magnetic resonance imaging and computerised tomography: current evidence and practical issues. Prenat Diagn. 2010;30:713–718.
    1. Bassat Q, Ordi J, Vila J, Ismail MR, Carrilho C, Lacerda M, et al. Development of a post-mortem procedure to reduce the uncertainty regarding causes of death in developing countries. Lancet Glob Health. 2013;1:e125–e126.
    1. Little JR, Murray PR, Traynor PS, Spitznagel E. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med. 1999;107:119–125.
    1. World Health Organization. World Health Statistics. World Health Organization. 2013. Ref Type: Internet Communication
    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.
    1. Castillo P, Menendez C, Mayor A, Carrilho C, Ismail MR, Lorenzoni C, et al. Massive Plasmodium falciparum visceral sequestration: a cause of maternal death in Africa. Clin Microbiol Infect. 2013;19:1035–1041.
    1. Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhães BM, Siqueira AM, et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis. 2012;55:e67–e74.
    1. Menendez C, Romagosa C, Ismail MR, Carrilho C, Saute F, Osman N, et al. An autopsy study of maternal mortality in Mozambique: the contribution of infectious diseases. PLoS Med. 2008;5:e44.
    1. Ordi J, Ismail MR, Carrilho C, Romagosa C, Osman N, Machungo F, et al. Clinico-pathological discrepancies in the diagnosis of causes of maternal death in sub-Saharan Africa: retrospective analysis. PLoS Med. 2009;6:e1000036.
    1. Cox JA, Lukande RL, Kalungi S, Van Marck E, Van de Vijver K, Kambugu A, et al. Needle autopsy to establish the cause of death in HIV-infected hospitalized adults in Uganda: a comparison to complete autopsy. J Acquir Immune Defic Syndr. 2014;67:169–176.
    1. Milner DA Jr, Valim C, Carr RA, Chandak PB, Fosiko NG, Whitten R, et al. A histological method for quantifying Plasmodium falciparum in the brain in fatal paediatric cerebral malaria. Malar J. 2013;12:191.
    1. Cox JA, Lukande RL, Kalungi S. Practice of percutaneous needle autopsy; a descriptive study reporting experiences from Uganda. BMC Clin Pathol. 2014;14:44.
    1. Sepulveda J, Murray C. The state of global health in 2014. Science. 2014;345:1275–1278.
    1. Frange P, Boutolleau D, Leruez-Ville M, Touzot F, Cros G, Heritier S, et al. Temporal and spatial compartmentalization of drug-resistant cytomegalovirus (CMV) in a child with CMV meningoencephalitis: implications for sampling in molecular diagnosis. J Clin Microbiol. 2013;51:4266–9. 10.1128/JCM.02411-13

Source: PubMed

3
S'abonner