The Association of TMPRSS6 Gene Polymorphism and Iron Intake with Iron Status among Under-Two-Year-Old Children in Lombok, Indonesia

Dewi Shinta, Asmarinah, Chris Adhiyanto, Min Kyaw Htet, Umi Fahmida, Dewi Shinta, Asmarinah, Chris Adhiyanto, Min Kyaw Htet, Umi Fahmida

Abstract

Multiple common variants in transmembrane protease serine 6 (TMPRSS6) were associated with the plasma iron concentration in genome-wide association studies, but their effect in young children where anemia and iron deficiency (ID) were prevalent has not been reported, particularly taking account of iron intake. This study aims to investigate whether TMPRSS6 SNPs (rs855791 and rs4820268) and iron intake are associated with a low iron and hemoglobin concentration in under-two-year-old children. The study analyzed the baseline of a randomized trial (NUPICO, ClinicalTrials.gov NCT01504633) in East Lombok, Indonesia. Children aged 6-17 months (n = 121) were included in this study. The multiple linear regressions showed that TMPRSS6 decreased serum ferritin (SF) by 4.50 g/L per copy minor allele (A) of rs855791 (p = 0.08) and by 5.00 μg/L per copy minor allele (G) of rs4820268 (p = 0.044). There were no associations between rs855791 and rs4820268 with soluble transferrin receptor (sTfR) and hemoglobin (Hb) concentration (rs855791; p = 0.38 and p = 0.13, rs4820268; p = 0.17 and p = 0.33). The finding suggests the need for further studies to explore whether the nutrient recommendation for iron should be based on genetic characteristics, particularly for children who have mutation in TMPRSS6.

Keywords: Indonesia; TMPRSS6; anemia; children; iron deficiency; iron intake.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Distribution of Iron deficiency, anemia and iron deficiency anemia status across genotypes of SNPs rs4820268.
Figure 2
Figure 2
Distribution of Iron deficiency, anemia and iron deficiency anemia status across genotypes of SNPs rs855791.

References

    1. WHO Global Database on Anaemia . Worldwide Prevalence of Anaemia 1993–2005. World Health Organization; Geneva, Switzerland: 2008.
    1. McLean E., Cogswell M., Egli I., Wojdyla D., de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12:444–454. doi: 10.1017/S1368980008002401.
    1. Tanaka T., Roy C.N., Yao W., Matteini A., Semba R.D., Arking D., Walston J.D., Fried L.P., Singleton A., Guralnik J., et al. A genome-wide association analysis of serum iron concentrations. Blood J. 2010;115:94–96. doi: 10.1182/blood-2009-07-232496.
    1. Gichohi-Wainaina W.N., Towers G.W., Swinkels D.W., Zimmermann M.B., Feskens E.J., Melse-Boonstra A. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: A systematic review with meta-analyses. Genes Nutr. 2014;10:442. doi: 10.1007/s12263-014-0442-2.
    1. Chambers J.C., Zhang W., Li Y., Sehmi J., Wass M.N., Zabaneh D., Hoggart C., Bayele H., McCarthy M.I., Peltonen L., et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat. Genet. 2009;41:1170–1172. doi: 10.1038/ng.462.
    1. Tatala S., Ndossi G., Ash D. Impact of dietary iron intake on anaemia in Tanzanian schoolchildren. Sajcn. 2004;17:94–100. doi: 10.1080/16070658.2004.11734026.
    1. Thurnham D.I., Mccabe G.P. World Health Organization, Proceedings of the Priorities in the Assessment of Vitamin A and Iron Status in Populations, Panama City, Panama, 15–17 September 2010. World Health Organization; Geneva, Switzerland: 2012. Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron.
    1. Cook J.D., Skikne B., Baynes R. The use of transferrin receptor for the assessment of iron status. In: Hallberg L.A., Asp N.-G., editors. Iron Nutrition in Health and Disease. John Libbey& Co.; London, UK: 1996. pp. 91–99.
    1. James W.H. The validity of Weinberg’s differential rule. Twin Res. Hum. Genet. 2007;10:771–772. doi: 10.1375/twin.10.5.771.
    1. Mayo O. A century of Hardy-weinberg equilibrium. Twin Res. Hum. Genet. 2008;11:249–256. doi: 10.1375/twin.11.3.249.
    1. Gibson S.R. Principles of Nutritional Assesment. 2nd ed. Oxford University Press; New York, NY, USA: 2005. 446p
    1. Thurnham D.I., Mburu A.S.W., Mwaniki D.L., Wagt A.D. Micronutrients in childhood and the influence of subclinical inflammation. Proc. Nutr. Soc. 2005;64:502–509. doi: 10.1079/PNS2005468.
    1. Åkesson A., Bjellerup P., Berglund M., Bremme K., Vahter M. Serum transferrin receptor: A specific marker of iron deficiency in pregnancy. Am. J. Clin. Nutr. 1998;68:1241–1246. doi: 10.1093/ajcn/68.6.1241.
    1. Gan W., Guan Y., Wu Q., An P., Zhu J., Lu L., Jing L., Yu Y., Ruan S., Xie D., et al. Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. Am. J. Clin. Nutr. 2012;95:626–632. doi: 10.3945/ajcn.111.025684.
    1. Gichohi-Wainaina W.N., Melse-Boonstra A., Swinkels D.W., Zimmermann M.B., Feskens E.J., Towers G.W. Common variants and haplotypes in the TF, TNF-alpha, and TMPRSS6 genes are associated with iron status in a female black South. J. Nutr. 2015;145:945–953. doi: 10.3945/jn.114.209148.
    1. Fumagalli M., Sironi M., Pozzoli U., Ferrer-Admettla A., Pattini L., Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011;7:e1002355. doi: 10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7.
    1. Tatala S., Svanberg U., Mduma B. Low dietary iron availability a major cause of anaemia. A nutrition survey in Lindi District of Tanzania. Am. J. Clin. Nutr. 1998;68:171–178. doi: 10.1093/ajcn/68.1.171.
    1. Zimmermann M.B., Hurrell R.F. Nutritional iron deficiency. Lancet. 2007;370:511–520. doi: 10.1016/S0140-6736(07)61235-5.
    1. Guo X., Zhou D., An P., Wu Q., Wang H., Wu A., Mu M., Zhang D., Zhang Z., Wang H., et al. Associations between serum hepcidin, ferritin and Hb concentrations and type 2 diabetes risks in a Han Chinese population. Br. J. Nutr. 2017;110:2180–2185. doi: 10.1017/S0007114513001827.

Source: PubMed

3
S'abonner