MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis

Jasmine Chong, Othman Soufan, Carin Li, Iurie Caraus, Shuzhao Li, Guillaume Bourque, David S Wishart, Jianguo Xia, Jasmine Chong, Othman Soufan, Carin Li, Iurie Caraus, Shuzhao Li, Guillaume Bourque, David S Wishart, Jianguo Xia

Abstract

We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since the last major update in 2015, MetaboAnalyst has continued to evolve based on user feedback and technological advancements in the field. For this year's update, four new key features have been added to MetaboAnalyst 4.0, including: (1) real-time R command tracking and display coupled with the release of a companion MetaboAnalystR package; (2) a MS Peaks to Pathways module for prediction of pathway activity from untargeted mass spectral data using the mummichog algorithm; (3) a Biomarker Meta-analysis module for robust biomarker identification through the combination of multiple metabolomic datasets and (4) a Network Explorer module for integrative analysis of metabolomics, metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also available to facilitate download and local installation of MetaboAnalyst. MetaboAnalyst 4.0 is freely available at http://metaboanalyst.ca.

Figures

Figure 1.
Figure 1.
Overview of MetaboAnalyst 4.0 framework. The current modules can be organized into four general categories: (i) exploratory statistical analysis, (ii) functional analysis, (iii) data integration & systems biology and (iv) data processing & utility functions.
Figure 2.
Figure 2.
Summary of new features introduced in MetaboAnalyst 4.0. (A) An illustration showing the R command history panel and the companion MetaboAnalystR package will allow users to easily reproduce their analyses. In this case, the R command history captures all R commands leading to the generation the PLS-DA 2D score plot, which can then be reproduced in MetaboAnalystR using identical R commands (except the file path parameter for user input). (B) A zoomed-in view of the KEGG metabolic network showing the potential metabolite hits predicted from the mummichog algorithm. Clicking on a highlighted node will display all possible matched adduct forms of the corresponding compound. (C) An interactive Venn diagram showing the results from a biomarker meta-analysis. Clicking on an area will show the corresponding hits. (D) An example of the metabolite-gene-disease interaction network created based on user input.

References

    1. Xia J., Psychogios N., Young N., Wishart D.S.. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009; 37:W652–W660.
    1. Xia J., Mandal R., Sinelnikov I.V., Broadhurst D., Wishart D.S.. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012; 40:W127–W133.
    1. Xia J., Wishart D.S.. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010; 38:W71–W77.
    1. Xia J., Wishart D.S.. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010; 26:2342–2344.
    1. Xia J., Sinelnikov I.V., Wishart D.S.. MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets. Bioinformatics. 2011; 27:2455–2456.
    1. Xia J., Sinelnikov I.V., Han B., Wishart D.S.. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015; 43:W251–W257.
    1. Xia J., Broadhurst D.I., Wilson M., Wishart D.S.. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013; 9:280–299.
    1. Tayyari F., Gowda G.N., Olopade O.F., Berg R., Yang H.H., Lee M.P., Ngwa W.F., Mittal S.K., Raftery D., Mohammed S.I.. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences. Oncotarget. 2018; 9:11677.
    1. Zhang G., Dervishi E., Dunn S.M., Mandal R., Liu P., Han B., Wishart D.S., Ametaj B.N.. Metabotyping reveals distinct metabolic alterations in ketotic cows and identifies early predictive serum biomarkers for the risk of disease. Metabolomics. 2017; 13:43.
    1. Reynolds L.A., Redpath S.A., Yurist-Doutsch S., Gill N., Brown E.M., van der Heijden J., Brosschot T.P., Han J., Marshall N.C., Woodward S.E.. Enteric helminths promote Salmonella coinfection by altering the intestinal metabolome. J. Infect. Dis. 2017; 215:1245–1254.
    1. Bahado-Singh R.O., Akolekar R., Mandal R., Dong E., Xia J., Kruger M., Wishart D.S., Nicolaides K.. Metabolomic analysis for first-trimester Down syndrome prediction. Am. J. Obstet. Gynecol. 2013; 208:371–378.
    1. Cox A.G., Hwang K.L., Brown K.K., Evason K.J., Beltz S., Tsomides A., O’Connor K., Galli G.G., Yimlamai D., Chhangawala S.. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 2016; 18:886.
    1. Arts R.J., Novakovic B., ter Horst R., Carvalho A., Bekkering S., Lachmandas E., Rodrigues F., Silvestre R., Cheng S.-C., Wang S.-Y.. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 2016; 24:807–819.
    1. Paglia G., Miedico O., Cristofano A., Vitale M., Angiolillo A., Chiaravalle A.E., Corso G., Di Costanzo A.. Distinctive pattern of serum elements during the progression of Alzheimer's disease. Scientific Rep. 2016; 6:22769.
    1. Li S., Park Y., Duraisingham S., Strobel F.H., Khan N., Soltow Q.A., Jones D.P., Pulendran B.. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013; 9:e1003123.
    1. Ravanbakhsh S., Liu P., Bjordahl T.C., Mandal R., Grant J.R., Wilson M., Eisner R., Sinelnikov I., Hu X., Luchinat C.. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE. 2015; 10:e0124219.
    1. Huan T., Forsberg E.M., Rinehart D., Johnson C.H., Ivanisevic J., Benton H.P., Fang M., Aisporna A., Hilmers B., Poole F.L.. Systems biology guided by XCMS Online metabolomics. Nat. Methods. 2017; 14:461.
    1. Wadi L., Meyer M., Weiser J., Stein L.D., Reimand J.. Impact of outdated gene annotations on pathway enrichment analysis. Nat. Methods. 2016; 13:705–706.
    1. Marco-Ramell A., Palau-Rodriguez M., Alay A., Tulipani S., Urpi-Sarda M., Sanchez-Pla A., Andres-Lacueva C.. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinformatics. 2018; 19:1.
    1. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K.. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45:D353–D361.
    1. Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N.. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017; 46:D608–D617.
    1. Hastings J., de Matos P., Dekker A., Ennis M., Harsha B., Kale N., Muthukrishnan V., Owen G., Turner S., Williams M.. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2012; 41:D456–D463.
    1. Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G.. METLIN: a metabolite mass spectral database. Therapeut. Drug Monitor. 2005; 27:747–751.
    1. Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A.. PubChem substance and compound databases. Nucleic Acids Res. 2015; 44:D1202–D1213.
    1. Jewison T., Su Y., Disfany F.M., Liang Y., Knox C., Maciejewski A., Poelzer J., Huynh J., Zhou Y., Arndt D.. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 2013; 42:D478–D484.
    1. Pluskal T., Castillo S., Villar-Briones A., Orešič M.. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010; 11:395.
    1. Lommen A., Kools H.J.. MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics. 2012; 8:719–726.
    1. Kind T., Fiehn O.. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics. 2006; 7:234.
    1. Kind T., Fiehn O.. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics. 2007; 8:105.
    1. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S. et al. . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:15545–15550.
    1. Johnson C.H., Ivanisevic J., Siuzdak G.. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016; 17:451–459.
    1. Hanash S.M., Pitteri S.J., Faca V.M.. Mining the plasma proteome for cancer biomarkers. Nature. 2008; 452:571–579.
    1. Goveia J., Pircher A., Conradi L.C., Kalucka J., Lagani V., Dewerchin M., Eelen G., DeBerardinis R.J., Wilson I.D., Carmeliet P.. Meta‐analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol. Med. 2016; 8:1134–1142.
    1. Tzoulaki I., Ebbels T.M., Valdes A., Elliott P., Ioannidis J.P.. Design and analysis of metabolomics studies in epidemiologic research: a primer on-omic technologies. Am. J. Epidemiol. 2014; 180:129–139.
    1. Tseng G.C., Ghosh D., Feingold E.. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 2012; 40:3785–3799.
    1. Patti G.J., Yanes O., Siuzdak G.. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012; 13:263–269.
    1. Xia J., Fjell C.D., Mayer M.L., Pena O.M., Wishart D.S., Hancock R.E.. INMEX–a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res. 2013; 41:W63–W70.
    1. Walsh C.J., Hu P., Batt J., Santos C.C.D.. Microarray meta-analysis and cross-platform normalization: integrative genomics for robust biomarker discovery. Microarrays. 2015; 4:389–406.
    1. Cambiaghi A., Ferrario M., Masseroli M.. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief. Bioinformatics. 2016; 18:498–510.
    1. Ritchie M.D., Holzinger E.R., Li R., Pendergrass S.A., Kim D.. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 2015; 16:85–97.
    1. Chong J., Xia J.. Computational approaches for integrative analysis of the metabolome and microbiome. Metabolites. 2017; 7:E62.
    1. Xia J., Gill E.E., Hancock R.E.. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015; 10:823–844.
    1. Yao Q., Xu Y., Yang H., Shang D., Zhang C., Zhang Y., Sun Z., Shi X., Feng L., Han J.. Global prioritization of disease candidate metabolites based on a multi-omics composite network. Scientific Rep. 2015; 5:17201.
    1. Thevenot E.A., Roux A., Xu Y., Ezan E., Junot C.. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015; 14:3322–3335.
    1. Lê Cao K.-A., Boitard S., Besse P.. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics. 2011; 12:253.
    1. Giacomoni F., Le Corguillé G., Monsoor M., Landi M., Pericard P., Pétéra M., Duperier C., Tremblay-Franco M., Martin J.-F., Jacob D.. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics. 2014; 31:1493–1495.
    1. Davidson R.L., Weber R.J., Liu H., Sharma-Oates A., Viant M.R.. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. Gigascience. 2016; 5:10.
    1. Wanichthanarak K., Fan S., Grapov D., Barupal D.K., Fiehn O.. Metabox: A toolbox for metabolomic data analysis, interpretation and integrative exploration. PLoS ONE. 2017; 12:e0171046.

Source: PubMed

3
S'abonner