Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites

Zheng-Zheng Tang, Guanhua Chen, Qilin Hong, Shi Huang, Holly M Smith, Rachana D Shah, Matthew Scholz, Jane F Ferguson, Zheng-Zheng Tang, Guanhua Chen, Qilin Hong, Shi Huang, Holly M Smith, Rachana D Shah, Matthew Scholz, Jane F Ferguson

Abstract

The human microbiome has been associated with health status, and risk of disease development. While the etiology of microbiome-mediated disease remains to be fully elucidated, one mechanism may be through microbial metabolism. Metabolites produced by commensal organisms, including in response to host diet, may affect host metabolic processes, with potentially protective or pathogenic consequences. We conducted multi-omic phenotyping of healthy subjects (N = 136), in order to investigate the interaction between diet, the microbiome, and the metabolome in a cross-sectional sample. We analyzed the nutrient composition of self-reported diet (3-day food records and food frequency questionnaires). We profiled the gut and oral microbiome (16S rRNA) from stool and saliva, and applied metabolomic profiling to plasma and stool samples in a subset of individuals (N = 75). We analyzed these multi-omic data to investigate the relationship between diet, the microbiome, and the gut and circulating metabolome. On a global level, we observed significant relationships, particularly between long-term diet, the gut microbiome and the metabolome. Intake of plant-derived nutrients as well as consumption of artificial sweeteners were associated with significant differences in circulating metabolites, particularly bile acids, which were dependent on gut enterotype, indicating that microbiome composition mediates the effect of diet on host physiology. Our analysis identifies dietary compounds and phytochemicals that may modulate bacterial abundance within the gut and interact with microbiome composition to alter host metabolism.

Keywords: diet; interaction; mediation; metabolome; microbiome; multi-omics analysis.

Figures

FIGURE 1
FIGURE 1
Overview of Study design, subject characteristics, and multi-omic sample availability.
FIGURE 2
FIGURE 2
Overview of global relationships between microbiota, diet, and metabolites. Thick line: distance correlation t-test p-value < 10−5; thin line: distance correlation t-test 10−5< p-value < 10−1.
FIGURE 3
FIGURE 3
Associations between habitual dietary nutrient intake and gut microbiome. Color intensity reflects the magnitude of the association coefficients between dietary variables and taxa.
FIGURE 4
FIGURE 4
Associations between gut microbiome and metabolites in plasma. Color intensity reflects the magnitude of the association coefficients between metabolites and taxa.
FIGURE 5
FIGURE 5
Associations between gut microbiome and metabolites in stool. Color intensity reflects the magnitude of the association coefficients between metabolites and taxa.
FIGURE 6
FIGURE 6
Dietary Fiber has a gut enterotype-dependent association with plasma secondary bile acids including ursodeoxycholate and taurodeoxycholate.
FIGURE 7
FIGURE 7
Plasma Ursodeoxycholate has a gut enterotype-dependent relationship with plasma C-Reactive Protein and BMI, with a positive association in Enterotype 2, and no relationship in Enterotype 1.

References

    1. Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., Cheng S., et al. (2018). Heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation 137 e67–e492. 10.1161/CIR.0000000000000558
    1. Caporaso J. G., Lauber C. L., Costello E. K., Berg-Lyons D., Gonzalez A., Stombaugh J., et al. (2011). Moving pictures of the human microbiome. Genome Biol. 12:R50. 10.1186/gb-2011-12-5-r50
    1. Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6 1621–1624. 10.1038/ismej.2012.8
    1. Chávez-Talavera O., Tailleux A., Lefebvre P., Staels B. (2017). Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152 1679–1694.e3. 10.1053/j.gastro.2017.01.055
    1. Chen J., Li H. (2013). Variable selection for sparse dirichlet-multinomial regression with an application to microbiome data analysis. Ann. Appl. Stat. 7 418–442. 10.1214/12-AOAS592
    1. Corbin K. D., Zeisel S. H. (2012). Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28 159–165. 10.1097/MOG.0b013e32834e7b4b
    1. Cotillard A., Kennedy S. P., Kong L. C., Prifti E., Pons N., Le Chatelier E., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 500 585–588. 10.1038/nature12480
    1. David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 559–563. 10.1038/nature12820
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107 14691–14696. 10.1073/pnas.1005963107
    1. Ding T., Schloss P. D. (2014). Dynamics and associations of microbial community types across the human body. Nature 509 357–360. 10.1038/nature13178
    1. Dubois G., Girard C., Lapointe F.-J., Shapiro B. J. (2017). The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome 5:151. 10.1186/s40168-017-0370-7
    1. Dziedzic K., Górecka D., Szwengiel A., Smoczyńska P., Czaczyk K., Komolka P. (2015). Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Food Funct. 6 1011–1020. 10.1039/c4fo00946k
    1. Faust K., Sathirapongsasuti J. F., Izard J., Segata N., Gevers D., Raes J., et al. (2012). Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8:e1002606. 10.1371/journal.pcbi.1002606
    1. Ferguson J. F., Allayee H., Gerszten R. E., Ideraabdullah F., Kris-Etherton P. M., Ordovas J. M., et al. (2016). Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American heart association. Circ. Cardiovasc. Genet. 9 291–313. 10.1161/HCG.0000000000000030
    1. Fernandez-Raudales D., Hoeflinger J. L., Bringe N. A., Cox S. B., Dowd S. E., Miller M. J., et al. (2012). Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes 3 490–500. 10.4161/gmic.21578
    1. Furusawa Y., Obata Y., Fukuda S., Endo T. A., Nakato G., Takahashi D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 446–450. 10.1038/nature12721
    1. Goodman A. L., Gordon J. I. (2010). Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 12 111–116. 10.1016/j.cmet.2010.07.001
    1. Haase S., Haghikia A., Wilck N., Müller D. N., Linker R. A. (2018). Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 154 230–238. 10.1111/imm.12933
    1. Imai K., Keele L., Tingley D. (2010). A general approach to causal mediation analysis. Psychol. Methods 15 309–334. 10.1037/a0020761
    1. Joyce S. A., Gahan C. G. M. (2016). Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7 313–333. 10.1146/annurev-food-041715-033159
    1. Kau A. L., Ahern P. P., Griffin N. W., Goodman A. L., Gordon J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature 474 327–336. 10.1038/nature10213
    1. Kaufman L., Rousseeuw P. J. (1987). “Clustering by means of medoids,” in Statistical Data analysis Based on the L1 Norm and Related Methods, ed. Dodge Y. (Amsterdam: Elsevier; ), 405–416.
    1. Koeth R. A., Wang Z., Levison B. S., Buffa J. A., Org E., Sheehy B. T., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19 576–585. 10.1038/nm.3145
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 1332–1345. 10.1016/j.cell.2016.05.041
    1. Koren O., Knights D., Gonzalez A., Waldron L., Segata N., Knight R., et al. (2013). A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9:e1002863. 10.1371/journal.pcbi.1002863
    1. Langfelder P., Horvath S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. 10.1186/1471-2105-9-559
    1. LeBlanc M.-J., Gavino V., Pérea A., Yousef I. M., Lévy E., Tuchweber B. (1998). The role of dietary choline in the beneficial effects of lecithin on the secretion of biliary lipids in rats. Biochim. Biophys. Acta 1393 223–234. 10.1016/S0005-2760(98)00072-1
    1. Levy M., Blacher E., Elinav E. (2017). Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 35 8–15. 10.1016/j.mib.2016.10.003
    1. Li H. (2015). Microbiome, metagenomics, and high-dimensional compositional data analysis. Annu. Rev. Stat. Appl. 2 73–94. 10.1146/annurev-statistics-010814-020351
    1. Li Z., Lee K., Karagas M. R., Madan J. C., Hoen A. G., O’Malley A. J., et al. (2018). Conditional regression based on a multivariate zero-inflated logistic-normal model for microbiome relative abundance data. Stat. Biosci. 10 587–608. 10.1007/s12561-018-9219-2
    1. Lin W., Shi P., Feng R., Li H. (2014). Variable selection in regression with compositional covariates. Biometrika 101 785–797. 10.1093/biomet/asu031
    1. Long S. L., Gahan C. G. M., Joyce S. A. (2017). Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 56 54–65. 10.1016/j.mam.2017.06.002
    1. Maier T. V., Lucio M., Lee L. H., VerBerkmoes N. C., Brislawn C. J., Bernhardt J., et al. (2017). Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 8:e01343-17. 10.1128/mBio.01343-17
    1. Majumdar A., Haldar T., Witte J. S. (2016). Determining which phenotypes underlie a pleiotropic signal. Genet. Epidemiol. 40 366–381. 10.1002/gepi.21973
    1. Marcobal A., Kashyap P. C., Nelson T. A., Aronov P. A., Donia M. S., Spormann A., et al. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 7 1933–1943. 10.1038/ismej.2013.89
    1. Maritz J. S. (1995). Distribution-Free Statistical Methods Monographs on Statistics and Applied Probability, 2nd Edn. Boca Raton, FL: CRC Press.
    1. Mayengbam S., Lambert J. E., Parnell J. A., Tunnicliffe J. M., Nicolucci A. C., Han J., et al. (2018). Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J. Nutr. Biochem. 64 228–236. 10.1016/j.jnutbio.2018.11.003
    1. Maynard C. L., Elson C. O., Hatton R. D., Weaver C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature 489 231–241. 10.1038/nature11551
    1. McHardy I. H., Goudarzi M., Tong M., Ruegger P. M., Schwager E., Weger J. R., et al. (2013). Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome 1:17. 10.1186/2049-2618-1-17
    1. Minot S., Sinha R., Chen J., Li H., Keilbaugh S. A., Wu G. D., et al. (2011). The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21 1616–1625. 10.1101/gr.122705.111
    1. Mohammadkhah A. I., Simpson E. B., Patterson S. G., Ferguson J. F. (2018). Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children 5:160. 10.3390/children5120160
    1. Moreira A. P., Texeira T. F., Ferreira A. B., Peluzio Mdo C., Alfenas Rde C. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108 801–809. 10.1017/S0007114512001213
    1. Pendyala S., Walker J. M., Holt P. R. (2012). A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142 1100–1101.e2. 10.1053/j.gastro.2012.01.034
    1. Piya M. K., Harte A. L., McTernan P. G. (2013). Metabolic endotoxaemia: is it more than just a gut feeling? Curr. Opin. Lipidol. 24 78–85. 10.1097/MOL.0b013e32835b4431
    1. Postler T. S., Ghosh S. (2017). Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26 110–130. 10.1016/j.cmet.2017.05.008
    1. Ridker P. M. (2003). Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107 363–369. 10.1161/01.cir.0000053730.47739.3c
    1. Rowland I. R., Wiseman H., Sanders T. A., Adlercreutz H., Bowey E. A. (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 36 27–32. 10.1207/S15327914NC3601_5
    1. Ruggles K. V., Wang J., Volkova A., Contreras M., Noya-Alarcon O., Lander O., et al. (2018). Changes in the gut microbiota of urban subjects during an immersion in the traditional diet and lifestyle of a rainforest village. mSphere 3:e00193-18. 10.1128/mSphere.00193-18
    1. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09
    1. Schnorr S. L., Candela M., Rampelli S., Centanni M., Consolandi C., Basaglia G., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5:3654. 10.1038/ncomms4654
    1. Sears C. L. (2005). A dynamic partnership: celebrating our gut flora. Anaerobe 11 247–251. 10.1016/j.anaerobe.2005.05.001
    1. Singh N., Gurav A., Sivaprakasam S., Brady E., Padia R., Shi H., et al. (2014). Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 128–139. 10.1016/j.immuni.2013.12.007
    1. Sohn M., Li H. (2019). Compositional mediation analysis for microbiome studies. Ann. Appl. Stat. 13 661–681. 10.1002/wsbm.1242
    1. Sonnenburg E. D., Smits S. A., Tikhonov M., Higginbottom S. K., Wingreen N. S., Sonnenburg J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 212–215. 10.1038/nature16504
    1. Subar A. F., Crafts J., Zimmerman T. P., Wilson M., Mittl B., Islam N. G., et al. (2010). Assessment of the accuracy of portion size reports using computer-based food photographs aids in the development of an automated self-administered 24-hour recall. J. Am. Diet. Assoc. 110 55–64. 10.1016/j.jada.2009.10.007
    1. Subar A. F., Thompson F. E., Kipnis V., Midthune D., Hurwitz P., McNutt S., et al. (2001). Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires?: the Eating at America’s Table Study. Am. J. Epidemiol. 154 1089–1099. 10.1093/aje/154.12.1089
    1. Székely G. J., Rizzo M. L. (2009). Brownian distance covariance. Ann. Appl. Stat. 3 1236–1265. 10.1214/09-AOAS312
    1. Székely G. J., Rizzo M. L. (2013). The distance correlation t-test of independence in high dimension. J. Multivar. Anal. 117 193–213. 10.1016/j.jmva.2013.02.012
    1. Székely G. J., Rizzo M. L., Bakirov N. K. (2007). Measuring and testing dependence by correlation of distances. Ann. Stat. 35 2769–2794. 10.1214/009053607000000505
    1. Tang W. H., Wang Z., Levison B. S., Koeth R. A., Britt E. B., Fu X., et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368 1575–1584. 10.1056/NEJMoa1109400
    1. Tang Z.-Z., Chen G. (2018). Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis. Biostatistics 10.1093/biostatistics/kxy025 [Epub ahead of print].
    1. Tibshirani R. (1994). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58 267–288. 10.1111/j.2517-6161.1996.tb02080.x
    1. Trabulsi J., Schoeller D. A. (2001). Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Physiol. 281 E891–E899.
    1. Tuncil Y. E., Thakkar R. D., Marcia A. D. R., Hamaker B. R., Lindemann S. R. (2018). Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci. Rep. 8:16655. 10.1038/s41598-018-34912-8
    1. Van Gaal L. F., Mertens I. L., De Block C. E. (2006). Mechanisms linking obesity with cardiovascular disease. Nature 444 875–880. 10.1038/nature05487
    1. Vital M., Howe A. C., Tiedje J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5:e00889-14. 10.1128/mBio.00889-14
    1. Wahlström A., Sayin S. I., Marschall H.-U., Bäckhed F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24 41–50. 10.1016/j.cmet.2016.05.005
    1. Wang Y., Harding S. V., Thandapilly S. J., Tosh S. M., Jones P. J. H., Ames N. P. (2017). Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. Br. J. Nutr. 118 822–829. 10.1017/S0007114517002835
    1. Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 57–63. 10.1038/nature09922
    1. Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y. Y., Keilbaugh S. A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334 105–108. 10.1126/science.1208344
    1. Xia J., Wishart D. S. (2011). Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinformatics 34 14.10.1–14.10.48. 10.1002/0471250953.bi1410s34
    1. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486 222–227. 10.1038/nature11053
    1. Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell 163 1079–1094. 10.1016/j.cell.2015.11.001
    1. Zhang X., Zhang D., Jia H., Feng Q., Wang D., Liang D., et al. (2015). The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21 895–905. 10.1038/nm.3914

Source: PubMed

3
S'abonner