The effects of exercise on cognition in Parkinson's disease: a systematic review

Danielle K Murray, Matthew A Sacheli, Janice J Eng, A Jon Stoessl, Danielle K Murray, Matthew A Sacheli, Janice J Eng, A Jon Stoessl

Abstract

Cognitive impairments are highly prevalent in Parkinson's disease (PD) and can substantially affect a patient's quality of life. These impairments remain difficult to manage with current clinical therapies, but exercise has been identified as a possible treatment. The objective of this systematic review was to accumulate and analyze evidence for the effects of exercise on cognition in both animal models of PD and human disease. This systematic review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Fourteen original reports were identified, including six pre-clinical animal studies and eight human clinical studies. These studies used various exercise interventions and evaluated many different outcome measures; therefore, only a qualitative synthesis was performed. The evidence from animal studies supports the role of exercise to improve cognition in humans through the promotion of neuronal proliferation, neuroprotection and neurogenesis. These findings warrant more research to determine what roles these neural mechanisms play in clinical populations. The reports on cognitive changes in clinical studies demonstrate that a range of exercise programs can improve cognition in humans. While each clinical study demonstrated improvements in a marker of cognition, there were limitations in each study, including non-randomized designs and risk of bias. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used and the quality of the evidence for human studies were rated from "low" to "moderate" and the strength of the recommendations were rated from "weak" to "strong". Studies that assessed executive function, compared to general cognitive abilities, received a higher GRADE rating. Overall, this systematic review found that in animal models exercise results in behavioral and corresponding neurobiological changes in the basal ganglia related to cognition. The clinical studies showed that various types of exercise, including aerobic, resistance and dance can improve cognitive function, although the optimal type, amount, mechanisms, and duration of exercise are unclear. With growing support for exercise to improve not only motor symptoms, but also cognitive impairments in PD, health care providers and policy makers should recommend exercise as part of routine management and neurorehabilitation for this disorder.

Figures

Figure 1
Figure 1
PRISMA Flow Diagram of Study Selection.

References

    1. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, Cummings JL. Range of neuropsychiatric disturbances in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1999;67:492–496. doi: 10.1136/jnnp.67.4.492.
    1. Chaudhuri KR, Healy DG, Schapira AHV. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006;5:235–245. doi: 10.1016/S1474-4422(06)70373-8.
    1. Macht M, Schwarz R, Ellgring H. Patterns of psychological problems in Parkinson's disease. Acta neurologica Scandinavica. 2005;111:95–101. doi: 10.1111/j.1600-0404.2005.00375.x.
    1. Hely MA, Reid WGJ, Adena MA, Halliday GA, Morris JGL. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–844. doi: 10.1002/mds.21956.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RMA, Wadia P, Miyasaki J, Duff-Canning S, Lang AE, Marras C. A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson's disease. Mov Disord. 2008;23:297–299. doi: 10.1002/mds.21837.
    1. Muller T, Kuhn W. Cysteine elevation in levodopa-treated patients with Parkinson's disease. Mov Disord. 2009;24:929–932. doi: 10.1002/mds.22482.
    1. Tillerson JL, Caudle WM, Reveron ME, Miller GW. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003;119:899–911. doi: 10.1016/S0306-4522(03)00096-4.
    1. Allen NE, Sherrington C, Paul SS, Canning CG. Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011;26:1605–1615. doi: 10.1002/mds.23790.
    1. Lauhoff P, Murphy N, Doherty C, Horgan NF. A controlled clinical trial investigating the effects of cycle ergometry training on exercise tolerance, balance and quality of life in patients with Parkinson's disease. Disabil Rehabil. 2013;35:382–387. doi: 10.3109/09638288.2012.694962.
    1. Ridgel AL, Peacock CA, Fickes EJ, Kim CH. Active-assisted cycling improves Tremor and Bradykinesia in Parkinson's disease. Arch Phys Med Rehabil. 2049–2054;2012:93.
    1. Ridgel AL, Vitek JL, Alberts JL. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabil Neural Repair. 2009;23:600–608. doi: 10.1177/1545968308328726.
    1. Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011;77:288–294. doi: 10.1212/WNL.0b013e318225ab66.
    1. Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013;28:1034–1049. doi: 10.1002/mds.25377.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Plos Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- lesioned mouse basal ganglia. J Neurosci Res. 2004;77:378–390. doi: 10.1002/jnr.20162.
    1. Gorton LM, Vuckovic MG, Vertelkina N, Petzinger GM, Jakowec MW, Wood RI. Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res. 2010;213:253–262. doi: 10.1016/j.bbr.2010.05.009.
    1. Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I. Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. 2010;1310:200–207.
    1. Aguiar AS Jr, Araujo AL, Da-Cunha TR, Speck AE, Ignacio ZM, De-Mello N, Prediger RD. Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull. 2009;79:452–457. doi: 10.1016/j.brainresbull.2009.05.005.
    1. Pothakos K, Kurz MJ, Lau Y-S. Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration. Bmc Neuroscience. 2009;10:6. doi: 10.1186/1471-2202-10-6.
    1. Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2014;256:61–71.
    1. Baatile J, Langbein WE, Weaver F, Maloney C, Jost MB. Effect of exercise on perceived quality of life of individuals with Parkinson's disease. J Rehabil Res Dev. 2000;37:529–534.
    1. Muller T, Muhlack S. Effect of exercise on reactivity and motor behaviour in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010;81:747–753. doi: 10.1136/jnnp.2009.174987.
    1. Pompeu JE, dos Santos Mendes FA, da Silva KG, Lobo AM, Oliveira TP, Zomignani AP, Pimentel Piemonte ME. Effect of Nintendo Wii (TM)-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 2012;98:196–204. doi: 10.1016/j.physio.2012.06.004.
    1. dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes Da Silva K, Oliveira Tde P, Peterson Zomignani A, Pimentel Piemonte ME. Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease–effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98:217–223. doi: 10.1016/j.physio.2012.06.001.
    1. Cruise KE, Bucks RS, Loftus AM, Newton RU, Pegoraro R, Thomas MG. Exercise and Parkinson's: benefits for cognition and quality of life. Acta neurologica Scandinavica. 2011;123:13–19. doi: 10.1111/j.1600-0404.2010.01338.x.
    1. Tanaka K, Quadros AC Jr, Santos RF, Stella F, Gobbi LT, Gobbi S. Benefits of physical exercise on executive functions in older people with Parkinson's disease. Brain Cogn. 2009;69:435–441. doi: 10.1016/j.bandc.2008.09.008.
    1. Ridgel AL, Kim C-H, Fickes EJ, Muller MD, Alberts JL. Changes in executive function after acute bouts of passive cycling in Parkinson's disease. J Aging Phys Act. 2011;19:87–98.
    1. McKee K, Hackney ME. The effects of adapted tango on spatial cognition and disease severity in Parkinson's disease. J Mot Behav. 2013;45:519–529. doi: 10.1080/00222895.2013.834288.
    1. Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2013;256C:61–71.
    1. Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK. Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2012;45:1051–1067. doi: 10.1016/j.nbd.2011.12.024.
    1. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JAC. et al.The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Brit Med J. 2011;343:889–893.
    1. Higgins JPT, Green S, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.9 [updated March 2011]. The Cochrane Collaboration. 2011. Available from .
    1. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–442. doi: 10.1212/WNL.17.5.427.
    1. Gerlach M, Riederer P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm. 1996;103:987–1041. doi: 10.1007/BF01291788.
    1. Jakowec MW, Petzinger GM. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinson's disease, with emphasis on mice and nonhuman primates. Comparative Med. 2004;54:497–513.
    1. Colpaert FC. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology. 1987;26:1431–1440. doi: 10.1016/0028-3908(87)90110-9.
    1. Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in neurobiology. 1996;50:275–331. doi: 10.1016/S0301-0082(96)00040-8.
    1. Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in neurobiology. 1996;49:215–266. doi: 10.1016/S0301-0082(96)00015-9.
    1. Schwarting RK, Huston JP. Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology. 1997;18:689–708.
    1. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VMY. Pathological alpha-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science. 2012;338:949–953. doi: 10.1126/science.1227157.
    1. Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kovari E. Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism Relat Disord. 2013;19:864–868. doi: 10.1016/j.parkreldis.2013.05.010. discussion 864.
    1. Kim S-E, Ko I-G, Shin M-S, Kim C-J, Jin B-K, Hong H-P, Jee Y-S. Treadmill exercise and wheel exercise enhance expressions of neutrophic factors in the hippocampus of lipopolysaccharide-injected rats. Neurosci Lett. 2013;538:54–59.
    1. Zigmond MJ, Cameron JL, Hoffer BJ, Smeyne RJ. Neurorestoration by physical exercise: moving forward. Parkinsonism Relat Disord. 2012;18(Supplement 1):S147–S150.
    1. Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. Neuroreport. 2013;24:509–514. doi: 10.1097/WNR.0b013e328361dc13.
    1. Higginson CI, King DS, Levine D, Wheelock VL, Khamphay NO, Sigvardt KA. The relationship between executive function and verbal memory in Parkinson's disease. Brain Cogn. 2003;52:343–352. doi: 10.1016/S0278-2626(03)00180-5.
    1. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rogriguez-Oroz MC, Burn DJ, Barker RA, Emre M. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27:349–356. doi: 10.1002/mds.24893.
    1. Kudlicka A, Clare L, Hindle JV. Executive functions in Parkinson's disease: Systematic review and meta-analysis. Mov Disord. 2011;26:2305–2315. doi: 10.1002/mds.23868.
    1. Lezak MD. Neuropsychological assessment. 3. New York: Oxford University Press; 1995.
    1. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A. Ageing, fitness and neurocognitive function. Nature. 1999;400:418–419. doi: 10.1038/22682.
    1. Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci. 2007;27:5291–5300. doi: 10.1523/JNEUROSCI.1069-07.2007.
    1. Vuckovic MG, Li QZ, Fisher B, Nacca A, Leahy RM, Walsh JP, Mukherjee J, Williams C, Jakowec MW, Petzinger GM. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease: in Vivo imaging with [F-18]Fallypride. Mov Disord. 2010;25:2777–2784. doi: 10.1002/mds.23407.
    1. de Melo Coelho FG, Gobbi S, Almeida Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013;56:10–15. doi: 10.1016/j.archger.2012.06.003.
    1. Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P. Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009;42:270–276. doi: 10.1055/s-0029-1224162.
    1. Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87–101.
    1. Langlois F, Vu TTM, Chasse K, Dupuis G, Kergoat MJ, Bherer L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B-Psychol. 2013;68:400–404. doi: 10.1093/geronb/gbs069.
    1. Gates N, Fiatarone Singh MA, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21:1086–1097. doi: 10.1016/j.jagp.2013.02.018.

Source: PubMed

3
S'abonner