Structural and Functional Brain Connectivity Changes Between People With Abdominal and Non-abdominal Obesity and Their Association With Behaviors of Eating Disorders

Bo-Yong Park, Mi Ji Lee, Mansu Kim, Se-Hong Kim, Hyunjin Park, Bo-Yong Park, Mi Ji Lee, Mansu Kim, Se-Hong Kim, Hyunjin Park

Abstract

Abdominal obesity is important for understanding obesity, which is a worldwide medical problem. We explored structural and functional brain differences in people with abdominal and non-abdominal obesity by using multimodal neuroimaging and up-to-date analysis methods. A total of 274 overweight people, whose body mass index exceeded 25, were enrolled in this study. Participants were divided into abdominal and non-abdominal obesity groups using a waist-hip ratio threshold of 0.9 for males and 0.85 for females. Structural and functional brain differences were assessed with diffusion tensor imaging and resting-state functional magnetic resonance imaging. Centrality measures were computed from structural fiber tractography, and static and dynamic functional connectivity matrices. Significant inter-group differences in structural and functional connectivity were found using degree centrality (DC) values. The associations between the DC values of the identified regions/networks and behaviors of eating disorder scores were explored. The highest association was achieved by combining DC values of the cerebral peduncle, anterior corona radiata, posterior corona radiata (from structural connectivity), frontoparietal network (from static connectivity), and executive control network (from dynamic connectivity) compared to the use of structural or functional connectivity only. Our results demonstrated the effectiveness of multimodal imaging data and found brain regions or networks that may be responsible for behaviors of eating disorders in people with abdominal obesity.

Keywords: abdominal obesity; eating disorder behaviors; multimodal imaging analysis; probabilistic fiber tractography; static and dynamic connectivity analysis.

Figures

FIGURE 1
FIGURE 1
Flowchart of processing steps adopted in this analysis.
FIGURE 2
FIGURE 2
(A) ROIs used in this study. (Left) ICBM DTI-81 atlas and (right) 16 functionally interpretable ICs. (B) Brain regions and networks that showed significant associations with EDE-Q scores. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor network; AN, auditory network; BG, basal ganglia.
FIGURE 3
FIGURE 3
Nine group-level brain states. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor network; AN, auditory network; BG, basal ganglia.
FIGURE 4
FIGURE 4
Representative networks of each group-level states. Elements of the matrix represent the hubness of BC. Representative networks are marked with the symbols “+.” VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor network; AN, auditory network; BG, basal ganglia; ICs, independent components.

References

    1. Allen E. A., Damaraju E., Plis S. M., Erhardt E. B., Eichele T., Calhoun V. D. (2012). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24 663–676. 10.1093/cercor/bhs352
    1. Azadbakht L., Esmaillzadeh A. (2011). Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public Health Nutr. 14 62–69. 10.1017/S1368980010000522
    1. Beckmann C. F., DeLuca M., Devlin J. T., Smith S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B 360 1001–1013. 10.1098/rstb.2005.1634
    1. Beckmann C. F., Smith S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 137–152.
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate?: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57 289–300.
    1. Brooks S. J., Cedernaes J., Schiöth H. B. (2013). Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PLoS One 8:e60393. 10.1371/journal.pone.0060393
    1. Brownell K. D., Wadden T. A. (1991). The heterogeneity of obesity: fitting treatments to individuals. Behav. Ther. 22 153–177. 10.1016/j.beth.2016.11.009
    1. Bujalska I. J., Kumar S., Stewart P. M. (1997). Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 349 1210–1213. 10.1016/S0140-6736(96)11222-8
    1. Bulik C. M., Sullivan P. F., Kendler K. S. (2003). Genetic and environmental contributions to obesity and binge eating. Int. J. Eat. Disord. 33 293–298. 10.1002/eat.10140
    1. Bullmore E., Sporns O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Neurosci. 10 186–198. 10.1038/nrn2575
    1. Carnell S., Gibson C., Benson L., Ochner C. N., Geliebter A. (2011). Neuroimaging and obesity: current knowledge and future directions. Obes. Rev. 13 1–14. 10.1111/j.1467-789X.2011.00927.x
    1. Carr D. B., Utzschneider K. M., Hull R. L., Kodama K., Retzlaff B. M., Brunzell J. D., et al. (2004). Intra-abdominal fat is a major determinant of the national cholesterol education program adult treatment panel III criteria for the metabolic syndrome. Diabetes Metab. Res. Rev. 53 2087–2094. 10.2337/diabetes.53.8.2087
    1. Catani M., Howard R. J., Pajevic S., Jones D. K. (2002). Virtual in Vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17 77–94. 10.1006/nimg.2002.1136
    1. Chen C., Witte M., Heemsbergen W., Herk M. V. (2013). Multiple comparisons permutation test for image based data mining in radiotherapy. Radiat. Oncol. 8:293. 10.1186/1748-717X-8-293
    1. Civardi C., Vicentini R., Grugni G., Cantello R. (2004). Corticospinal physiology in patients with prader-willi syndrome. Arch. Neurol. 611585–1589.
    1. Cox R. W. (1996). AFNI?: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29 162–173. 10.1006/cbmr.1996.0014
    1. Dallman M. F., Pecoraro N., Akana S. F., Fleur S. E., Gomez F., Houshyar H., et al. (2003). Chronic stress and obesity: a new view of “comfort food. Proc. Natl. Acad. Sci. U.S.A 100 11696–11701.
    1. Damaraju E., Allen E. A., Belger A., Ford J. M., McEwen S., Mathalon D. H., et al. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 5 298–308. 10.1016/j.nicl.2014.07.003
    1. Daubenmier J., Kristeller J., Hecht F. M., Maninger N., Kuwata M., Jhaveri K., et al. (2011). Mindfulness intervention for stress eating to reduce cortisol and abdominal fat among overweight and obese women?: an exploratory randomized controlled study. J. Obes. 2011:651936. 10.1155/2011/651936
    1. Davids S., Lauffer H., Thoms K., Jagdhuhn M., Hirschfeld H., Domin M., et al. (2010). Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. Int. J. Obes. 34 94–104. 10.1038/ijo.2009.193
    1. DelParigi A., Chen K., Salbe A. D., Hill J. O., Wing R. R., Reiman E. M., et al. (2004). Persistence of abnormal neural responses to a meal in postobese individuals. Int. J. Obes. 28 370–377. 10.1038/sj.ijo.0802558
    1. Després J.-P., Lemieux I. (2006). Abdominal obesity and metabolic syndrome. Nature 444 881–887. 10.1038/nature05488
    1. Després J. P., Lemieux I., Bergeron J., Pibarot P., Mathieu P., Larose E., et al. (2008). Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28 1039–1049. 10.1161/ATVBAHA.107.159228
    1. Fairburn C., Beglin S. (1994). Assessment of eating disorders: interview or self- report questionnaire? Int. J. Eat. Disord. 16 363–370.
    1. Folsom A. R., Kaye S. A., Sellers T. A., Hong C.-P., Cerhan J. R., Potter J. D., et al. (1993). Body fat distribution and 5-year risk of death in older women. JAMA J. Am. Med. Assoc. 269 483–487. 10.1001/jama.1993.03500040049035
    1. Folsom A. R., Kushi L. H., Anderson K. E., Mink P. J., Olson J. E., Hong C.-P., et al. (2000). Associations of general and abdominal obesity with multiple health outcomes in older women. Arch. Intern. Med. 160 2117–2128. 10.1001/archinte.160.14.2117
    1. Friedman J., Hastie T., Tibshirani R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432–441. 10.1093/biostatistics/kxm045
    1. Gaudio S., Quattrocchi C. C., Piervincenzi C., Zobel B. B., Montecchi F. R., Dakanalis A., et al. (2017). White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: a diffusion tensor imaging study. Psychiatry Res. Neuroimaging 266 138–145. 10.1016/j.pscychresns.2017.06.011
    1. Gluck M. E., Geliebter A., Lorence M. (2004). Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder ( BED ) before and after cognitive-behavioral treatment. Ann. N. Y. Acad. Sci. 1032 202–207. 10.1196/annals.1314.021
    1. Griffanti L., Douaud G., Bijsterbosch J., Evangelisti S., Alfaro-Almagro F., Glasser M. F., et al. (2017). Hand classification of fMRI ICA noise components. Neuroimage 154 188–205. 10.1016/j.neuroimage.2016.12.036
    1. Holland P. C., Gallagher M. (2004). Amygdala-frontal interactions and reward expectancy. Curr. Opin. Neurobiol. 14 148–155. 10.1016/j.conb.2004.03.007
    1. Hollmann M., Hellrung L., Pleger B., Schlögl H., Kabisch S., Stumvoll M., et al. (2012). Neural correlates of the volitional regulation of the desire for food. Int. J. Obes. 36 648–655. 10.1038/ijo.2011.125
    1. Hoth K. F., Gonzales M. M., Tarumi T., Miles S. C., Tanaka H., Haley A. P. (2011). Functional MR imaging evidence of altered functional activation in metabolic syndrome. Am. J. Neuroradiol. 32 541–547. 10.3174/ajnr.A2315
    1. Hutchison R. M., Womelsdorf T., Allen E. A., Bandettini P. A., Calhoun V. D., Corbetta M., et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80 360–378. 10.1016/j.neuroimage.2013.05.079
    1. Jagust W., Harvey D., Mungas D., Haan M. (2005). Central obesity and the aging brain. Arch. Neurol. 62 1545–1548. 10.1001/archneur.62.10.1545
    1. Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., Smith S. M. (2012). Fsl. Neuroimage 62 782–790. 10.1016/j.neuroimage.2011.09.015
    1. Kalivas P. W., Volkow N. D. (2005). The neural basis of addiction:a pathology of motivation and choice. Am. J. Psychiatry 162 1403–1413. 10.1176/appi.ajp.162.8.1403
    1. Karlsson H. K., Tuulari J. J., Hirvonen J., Lepomäki V., Parkkola R., Hiltunen J., et al. (2013). Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity 21 2530–2537. 10.1002/oby.20386
    1. Kelly R. E. J., Alexopoulos G. S., Wang Z., Gunning F. M., Murphy C. F., Morimoto S. S., et al. (2010). Visual inspection of independent components: defining a procedure. J. Neurosci. Methods 189 233–245. 10.1016/j.jneumeth.2010.03.028.Visual
    1. Kodinariya T. M., Makwana P. R. (2013). Review on determining number of cluster in K-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1 90–95.
    1. Koyama T., Tsuji M., Nishimura H., Miyake H., Ohmura T., Domen K. (2013). Diffusion tensor imaging for intracerebral hemorrhage outcome prediction: comparison using data from the corona radiata/internal capsule and the cerebral peduncle. J. Stroke Cerebrovasc. Dis. 22 72–79. 10.1016/j.jstrokecerebrovasdis.2011.06.014
    1. Kringelbach M. L., Rolls E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72 341–372. 10.1016/j.pneurobio.2004.03.006
    1. Kullmann S., Heni M., Veit R., Ketterer C., Schick F., Häring H. U., et al. (2012). The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp. 33 1052–1061. 10.1002/hbm.21268
    1. Kullmann S., Heni M., Veit R., Scheffler K., Machann J., Häring H. U., et al. (2017). Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Sci. Rep. 7 1–10. 10.1038/s41598-017-01907-w
    1. Le D. S. N. T., Pannacciulli N., Chen K., Del Parigi A., Salbe A. D., Reiman E. M., et al. (2006). Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am. J. Clin. Nutr. 84 725–731.
    1. Le D. S. N. T., Pannacciulli N., Chen K., Salbe A. D., Hill J. O., Wing R. R., et al. (2007). Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am. J. Clin. Nutr. 86 573–579.
    1. Lips M. A., Wijngaarden M. A., Van Der Grond J., Van Buchem M. A., De Groot G. H., Rombouts S. A., et al. (2014). Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am. J. Clin. Nutr. 100 524–531. 10.3945/ajcn.113.080671
    1. Malik V. S., Willett W. C., Hu F. B. (2013). Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9 13–27. 10.1038/nrendo.2012.199
    1. McLaughlin T. (2012). Metabolic heterogeneity of obesity: role of adipose tissue. Int. J. Obes. Suppl. 2 S8–S10. 10.1038/ijosup.2012.3
    1. Minka T. P. (2000). Automatic Choice of Dimensionality for PCA. Cambridge, MA: MIT Media Laboratory.
    1. Mond J. M., Hay P. J., Rodgers B., Owen C., Beumont P. J. V. (2004). Validity of the Eating Disorder Examination Questionnaire (EDE-Q) in screening for eating disorders in community samples. Behav. Res. Ther. 42 551–567. 10.1016/S0005-7967(03)00161-X
    1. Mumford J. A., Horvath S., Oldham M. C., Langfelder P., Geschwind D. H., Poldrack R. A. (2010). Detecting network modules in fMRI time series: a weighted network analysis approach. Neuroimage 52 1465–1476. 10.1016/j.neuroimage.2010.05.047
    1. Nooner K. B., Colcombe S. J., Tobe R. H., Mennes M., Benedict M. M., Moreno A. L., et al. (2012). The NKI-rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6:152. 10.3389/fnins.2012.00152
    1. Olivo G., Wiemerslage L., Swenne I., Zhukowsky C., Salonen-Ros H., Larsson E. M., et al. (2017). Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: a longitudinal DTI study in adolescents with restrictive eating disorders. PLoS One 12:e0172129. 10.1371/journal.pone.0172129
    1. Papageorgiou I., Astrakas L. G., Xydis V., Alexiou G. A., Bargiotas P., Tzarouchi L., et al. (2017). Abnormalities of brain neural circuits related to obesity: a diffusion tensor imaging study. Magn. Reson. Imaging 37 116–121. 10.1016/j.mri.2016.11.018
    1. Park B., Kim M., Lee J., Park H. (2016a). Connectivity analysis and feature classification in attention deficit hyperactivity disorder sub-types: a task functional magnetic resonance imaging study. Brain Topogr. 29 429–439. 10.1007/s10548-015-0463-1
    1. Park B., Moon T., Park H. (2018). Dynamic functional connectivity analysis reveals improved association between brain networks and eating behaviors compared to static analysis. Behav. Brain Res. 337 114–121. 10.1016/j.bbr.2017.10.001
    1. Park B., Seo J., Park H. (2016b). Functional brain networks associated with eating behaviors in obesity. Sci. Rep. 6:23891. 10.1038/srep23891
    1. Petrovich G. D., Ross C. A., Holland P. C., Gallagher M. (2007). Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J. Neurosci. 27 6436–6441. 10.1523/JNEUROSCI.5001-06.2007
    1. Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59 2142–2154. 10.1016/j.neuroimage.2011.10.018
    1. Raji C. A., Ho A. J., Parikshak N., Becker J. T., Lopez O. L., Kuller L. H., et al. (2010). Brain structure and obesity. Hum. Brain Mapp. 31 353–364. 10.1002/hbm.20870.Brain
    1. Ramnani N. (2006). The primate cortico-cerebellar system: anatomy and function. Nat. Rev. Neurosci. 7 511–522. 10.1038/nrn1953
    1. Rubinov M., Sporns O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52 1059–1069. 10.1016/j.neuroimage.2009.10.003
    1. Ryan L., Walther K. (2014). White matter integrity in older females is altered by increased body fat. Obesity 22 2039–2046. 10.1002/oby.20815
    1. Salimi-Khorshidi G., Douaud G., Beckmann C. F., Glasser M. F., Griffanti L., Smith S. M. (2014). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90 449–468. 10.1016/j.neuroimage.2013.11.046
    1. Schwarz A. J., McGonigle J. (2011). Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. Neuroimage 55 1132–1146. 10.1016/j.neuroimage.2010.12.047
    1. Seo E. H., Lee D. Y., Lee J.-M., Park J.-S., Sohn B. K., Lee D. S., et al. (2013). Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One 8:e53922. 10.1371/journal.pone.0053922
    1. Shott M. E., Cornier M.-A., Mittal V. A., Pryor T. L., Orr J. M., Brown M. S., et al. (2015). Orbitofrontal cortex volume and brain reward response in obesity. Int. J. Obes. 39 214–221. 10.1038/ijo.2014.121
    1. Smith S. M., Fox P. T., Miller K. L., Glahn D. C., Fox P. M., Mackay C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106 13040–13045. 10.1073/pnas.0905267106
    1. Smith S. M., Miller K. L., Moeller S., Xu J., Auerbach E. J., Woolrich M. W., et al. (2012). Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109 3131–3136. 10.1073/pnas.1121329109
    1. Smith S. M., Vidaurre D., Beckmann C. F., Glasser M. F., Jenkinson M., Miller K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17 666–682. 10.1016/j.tics.2013.09.016
    1. Stefan N., Häring H.-U., Hu F. B., Schulze M. B. (2013). Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 1 152–162. 10.1016/S2213-8587(13)70062-7
    1. Stice E., Spoor S., Bohon C., Veldhuizen M., Small D. (2008). Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J. Abnorm. Psychol. 117 924–935. 10.1037/a0013600.Relation
    1. Succurro E., Segura-garcia C., Ruffo M., Caroleo M., Rania M., Aloi M., et al. (2015). Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile. Medicine 94 1–7. 10.1097/MD.0000000000002098
    1. Tataranni P. A., Gautier J.-F., Chen K., Uecker A., Bandy D., Salbe A. D., et al. (1999). Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl. Acad. Sci. U.S.A. 96 4569–4574. 10.1073/pnas.96.8.4569
    1. Vainik U., Dagher A., Dubé L., Fellows L. K. (2013). Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci. Biobehav. Rev. 37 279–299. 10.1016/j.neubiorev.2012.11.008
    1. Val-Laillet D., Aarts E., Weber B., Ferrari M., Quaresima V., Stoeckel L. E., et al. (2015). Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage Clin. 8 1–31. 10.1016/j.nicl.2015.03.016
    1. van Bloemendaal L., Ijzerman R. G., ten Kulve J. S., Barkhof F., Diamant M., Veltman D. J., et al. (2016). Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab. Brain Dis. 31 621–629. 10.1007/s11011-016-9792-3
    1. van Vugt D. A. (2009). Brain imaging studies of appetite in the context of obesity and the menstrual cycle. Hum. Reprod. Update 16 276–292. 10.1093/humupd/dmp051
    1. Volkow N. D., Fowler J. S., Wang G. J., Baler R., Telang F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56 3–8. 10.1016/j.neuropharm.2008.05.022
    1. Wang G. J., Volkow N. D., Telang F., Jayne M., Ma J., Rao M., et al. (2004). Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 21 1790–1797. 10.1016/j.neuroimage.2003.11.026
    1. World Health Organization (2008). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva: World Health Organization.
    1. Yates K. F., Sweat V., Yau P. L., Turchiano M. M., Convit A. (2012). Impact of metabolic syndrome on cognition and brain. Arterioscler. Thromb. Vasc. Biol. 32 2060–2067. 10.1161/ATVBAHA.112.252759
    1. Yau P. L. P. L., Castro M. G., Tagani A., Tsui W. H., Convit A. (2012). Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics 130 e856–e864. 10.1542/peds.2012-0324
    1. Zhang C., Rexrode K. M., van Dam R. M., Li T. Y., Hu F. B. (2008). Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation 117 1658–1667. 10.1161/CIRCULATIONAHA.107.739714
    1. Zhang J. G., Wang Z. H., Wang H. J., Du W. W., Su C., Zhang J., et al. (2015). Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur. J. Clin. Nutr. 69 1009–1014. 10.1038/ejcn.2015.8

Source: PubMed

3
S'abonner