Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: a 36-week, randomized, placebo-controlled trial

Samantha Galluzzi, Roberta Zanardini, Clarissa Ferrari, Sara Gipponi, Ilaria Passeggia, Michela Rampini, Giovanni Sgrò, Salvatore Genovese, Serena Fiorito, Lucia Palumbo, Michela Pievani, Giovanni B Frisoni, Francesco Epifano, Samantha Galluzzi, Roberta Zanardini, Clarissa Ferrari, Sara Gipponi, Ilaria Passeggia, Michela Rampini, Giovanni Sgrò, Salvatore Genovese, Serena Fiorito, Lucia Palumbo, Michela Pievani, Giovanni B Frisoni, Francesco Epifano

Abstract

Background: Auraptene (AUR) and naringenin (NAR) are citrus-derived phytochemicals that influence several biological mechanisms associated with cognitive decline, including neuronal damage, oxidative stress and inflammation. Clinical evidence of the efficacy of a nutraceutical with the potential to enhance cognitive function in cohorts at risk of cognitive decline would be of great value from a preventive perspective. The primary aim of this study is to determine the cognitive effects of a 36-week treatment with citrus peel extract standardized in levels of AUR and NAR in older adults experiencing subjective cognitive decline (SCD). The secondary aim is to determine the effects of these phytochemicals on blood-based biomarkers indicative of neuronal damage, oxidative stress, and inflammation.

Methods: Eighty older persons with SCD will be recruited and randomly assigned to receive the active treatment (400 mg of citrus peel extract containing 0.1 mg of AUR and 3 mg of NAR) or the placebo at a 1:1 ratio for 36 weeks. The primary endpoint is a change in the Repeatable Battery for the Assessment of Neuropsychological Status score from baseline to weeks 18 and 36. Other cognitive outcomes will include changes in verbal and nonverbal memory, attention, executive and visuospatial functions. Blood samples will be collected from a consecutive subsample of 60 participants. The secondary endpoint is a change in interleukin-8 levels over the 36-week period. Other biological outcomes include changes in markers of neuronal damage, oxidative stress, and pro- and anti-inflammatory cytokines.

Conclusion: This study will evaluate whether an intervention with citrus peel extract standardized in levels of AUR and NAR has cognitive and biological effects in older adults with SCD, facilitating the establishment of nutrition intervention in people at risk of cognitive decline.

Trial registration: The trial is registered with the United States National Library of Medicine at the National Institutes of Health Registry of Clinical Trials under the code NCT04744922 on February 9th, 2021 ( https://www.

Clinicaltrials: gov/ct2/show/NCT04744922 ).

Keywords: Auraptene; Biological markers; Naringenin; Randomized clinical trial; Subjective cognitive decline.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of the trial

References

    1. Alzheimer’s association. 2019 alzheimer’s disease fact and figures. . Accessed Jun 20 2021.
    1. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26:S177–S183. doi: 10.37765/ajmc.2020.88482.
    1. Zissimopoulos JM, Tysinger BC, St Clair PA, Crimmins EM. The Impact of changes in population health and mortality on future prevalence of alzheimer's disease and other dementias in the United States. J Gerontol B Psychol Sci Soc Sci. 2018;73:S38–S47. doi: 10.1093/geronb/gbx147.
    1. Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19:271–278. doi: 10.1016/S1474-4422(19)30368-0.
    1. Snitz BE, Wang T, Cloonan YK, Jacobsen E, Chang C-CH, Hughes TF, et al. Risk of progression from subjective cognitive decline to mild cognitive impairment: The role of study setting. Alzheimers Dement. 2018;14:734–42. doi: 10.1016/j.jalz.2017.12.003.
    1. Amariglio RE, Mormino EC, Pietras AC, Marshall GA, Vannini P, Johnson KA, et al. Subjective cognitive concerns, amyloid-β, and neurodegeneration in clinically normal elderly. Neurol. 2015;85:56–62. doi: 10.1212/WNL.0000000000001712.
    1. Bhome R, Berry AJ, Huntley JD, Howard RJ. Interventions for subjective cognitive decline: systematic review and meta-analysis. BMJ Open. 2018;8:e021610. doi: 10.1136/bmjopen-2018-021610.
    1. Liu YH, Gao X, Na M, Kris-Etherton PM, Mitchell DC, Jensen GL, et al. Diet quality, and dementia: a systematic review and meta-analysis of prospective cohort studies. J Alzheimers Dis. 2020;78:151–168. doi: 10.3233/JAD-200499.
    1. Nooyens ACJ, Yildiz B, Hendriks LG, Bas S, van Boxtel MPJ, Picavet HSJ, et al. Adherence to dietary guidelines and cognitive decline from middle age: the doetinchem cohort study. Am J Clin Nutr. 2021;114:871. doi: 10.1093/ajcn/nqab109.
    1. Pouchieu C, Andreeva VA, Péneau S, Kesse-Guyot E, Lassale C, Hercberg S, et al. Sociodemographic, lifestyle and dietary correlates of dietary supplement use in a large sample of French adults: results from the NutriNet-Santé cohort study. Br J Nutr. 2013;110:1480–1491. doi: 10.1017/S0007114513000615.
    1. Giudici KV. Nutrition-based approaches in clinical trials targeting cognitive function: highlights of the CTAD 2020. J Prev Alzheimers Dis. 2021;8:118–122.
    1. Rajaram S, Jones J, Lee GJ. Plant-based dietary patterns, plant foods, and age-related cognitive decline. Adv Nutr. 2019;10:S422–S436. doi: 10.1093/advances/nmz081.
    1. Howes MR, Perry NSL, Vásquez-Londoño C, Perry EK. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. Br J Pharmacol. 2020;177:1294–1315. doi: 10.1111/bph.14898.
    1. Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, et al. Neuroprotection: targeting multiple pathways by naturally occurring phytochemicals. Biomedicines. 2020;8:284. doi: 10.3390/biomedicines8080284.
    1. Singh P, Sivanandam TM, Konar A, Thakur MK. Role of nutraceuticals in cognition during aging and related disorders. Neurochem Int. 2021;143:104928. doi: 10.1016/j.neuint.2020.104928.
    1. Okuyama S, Minami S, Shimada N, Makihata N, Nakajima M, Furukawa Y. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol. 2013;699:118–123. doi: 10.1016/j.ejphar.2012.11.043.
    1. Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacol. 2014;79:380–388. doi: 10.1016/j.neuropharm.2013.11.026.
    1. Okuyama S, Morita M, Kaji M, Amakura Y, Yoshimura M, Shimamoto K, et al. Auraptene acts as an anti-inflammatory agent in the mouse brain. Mol. 2015;20:20230–20239. doi: 10.3390/molecules201119691.
    1. Ghanbarabadi M, Iranshahi M, Amoueian S, Mehri S, Motamedshariaty VS, Mohajeri SA. Neuroprotective and memory enhancing effects of auraptene in a rat model of vascular dementia: Experimental study and histopathological evaluation. Neurosci Lett. 2016;623:13–21. doi: 10.1016/j.neulet.2016.04.047.
    1. Okuyama S, Yamamoto K, Mori H, Sawamoto A, Amakura Y, Yoshimura M, et al. Neuroprotective effect of citrus kawachiensis (Kawachi Bankan) peels, a rich source of naringin, against global cerebral ischemia/reperfusion injury in mice. Biosci Biotechnol Biochem. 2018;82:1216–1224. doi: 10.1080/09168451.2018.1456320.
    1. Okuyama S, Nakashima T, Nakamura K, Shinoka W, Kotani M, Sawamoto A, et al. Inhibitory effects of auraptene and naringin on astroglial activation, tau hyperphosphorylation, and suppression of neurogenesis in the hippocampus of streptozotocin-induced hyperglycemic mice. Antioxid (Basel) 2018;7:109. doi: 10.3390/antiox7080109.
    1. Krishna Chandran AM, Christina H, Das S, Mumbrekar KD, Satish Rao BS. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environ Toxicol Pharmacol. 2019;71:103224. doi: 10.1016/j.etap.2019.103224.
    1. Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, et al. Naringenin ameliorates alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int. 2012;61:1081–1093. doi: 10.1016/j.neuint.2012.07.025.
    1. Tabrizian K, Yaghoobi NS, Iranshahi M, Shahraki J, Rezaee R, Hashemzaei M. Auraptene consolidates memory, reverses scopolamine-disrupted memory in passive avoidance task, and ameliorates retention deficits in mice. Iran J Basic Med Sci. 2015;18:1014–1019.
    1. Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, et al. Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol. 2015;764:195–201. doi: 10.1016/j.ejphar.2015.07.001.
    1. Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, et al. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS ONE. 2020;15:e0227631. doi: 10.1371/journal.pone.0227631.
    1. Zhou T, Liu L, Wang Q, Gao Y. Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice. J Food Biochem. 2020;44:e13375. doi: 10.1111/jfbc.13375.
    1. Okuyama S, Katoh M, Kanzaki T, Kotani Y, Amakura Y, Yoshimura M, et al. Auraptene/naringin-rich fruit juice of citrus kawachiensis (Kawachi Bankan) Prevents ischemia-induced neuronal cell death in mouse brain through anti-inflammatory responses. J Nutr Sci Vitaminol (Tokyo) 2019;65:66–71. doi: 10.3177/jnsv.65.66.
    1. Igase M, Okada Y, Ochi M, Igase K, Ochi H, Okuyama S, et al. Auraptene in the peels of citrus kawachiensis (Kawachibankan) contributes to the preservation of cognitive function: a randomized, placebo-controlled, double-blind study in healthy volunteers. J Prev Alzheimers Dis. 2018;5:197–201.
    1. Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel) 2019;12:11. doi: 10.3390/ph12010011.
    1. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. subjective cognitive decline initiative (SCD-I) Working Group. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement. 2014;10:844–52. doi: 10.1016/j.jalz.2014.01.001.
    1. Jessen F, Spottke A, Boecker H, Brosseron F, Buerger K, Catak C, et al. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer's disease (DELCODE) Alzheimers Res Ther. 2018;10:15. doi: 10.1186/s13195-017-0314-2.
    1. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C, CONSORT Group Recommendations for reporting randomized controlled trials of herbal interventions: explanation and elaboration. J Clin Epidemiol. 2006;59:1134–49. doi: 10.1016/j.jclinepi.2005.12.020.
    1. Ferry M, Coley N, Andrieu S, Bonhomme C, Caubère JP, Cesari M, et al. How to design nutritional intervention trials to slow cognitive decline in apparently healthy populations and apply for efficacy claims: a statement from the international academy on nutrition and aging task force. J Nutr Health Aging. 2013;17:619–623. doi: 10.1007/s12603-013-0350-y.
    1. Centro Alzheimer – web site of the lab of alzheimer’s neuroimaging et epidemiology. . Accessed July 10 2021.
    1. Fatebenefratelli – web site of the IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli. . Accessed July 10 2021.
    1. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of geriatric depression screening: a preliminary report. J Psychiatr Res. 1983;17:37–49. doi: 10.1016/0022-3956(82)90033-4.
    1. Parmelee PA, Thuras PD, Katz IR, Lawton MP. Validation of the cumulative illness rating scale in a geriatric residential population. J Am Geriatr Soc. 1995;43:130–137. doi: 10.1111/j.1532-5415.1995.tb06377.x.
    1. Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011;141:1140. doi: 10.3945/jn.110.135566.
    1. Nucci M, Mapelli D, Mondini S. The cognitive reserve questionnaire (CRIq): a new instrument for measuring the cognitive reserve. Aging Clin Exp Res. 2012;24:218–226.
    1. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the state-trait anxiety inventory (Form Y) Palo Alto. CA: Consulting Psychologists Press; 1983.
    1. Genovese S, Fiorito S, Locatelli M, Carlucci G, Epifano F. Analysis of biologically active ferulic acid derivatives in citrus fruits. Plant Foods Hum Nutr. 2014;69:255–260. doi: 10.1007/s11130-014-0427-8.
    1. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, et al. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med. 2014;2014:253875. doi: 10.1155/2014/253875.
    1. Hong YS, Choi JY, Nho EY, Hwang IM, Khan N, Jamila N, et al. Determination of macro, micro and trace elements in citrus fruits by inductively coupled plasma-optical emission spectrometry (ICP-OES), ICP-mass spectrometry and direct mercury analyzer. J Sci Food Agric. 2019;99:1870–1879. doi: 10.1002/jsfa.9382.
    1. Ponteri M, Pioli R, Padovani A, Tunesi S, De Girolamo G. RBANS repeatable battery for the assessment of neuropsychological status. Edizione italiana. Firenze: Giunti O.S; 2007.
    1. Folstein MF, Folstein SE, McHugh PR. Mini-mental state:a practical method for grading the cognitive state of patients for theclinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Argento O, Pisani V, Incerti CC, Magistrale G, Caltagirone C, Nocentini U. The California verbal learning test-II: normative data for two Italian alternative forms. Clin Neuropsychol. 2015;28:S42–54. doi: 10.1080/13854046.2014.978381.
    1. Della Sala S, Laiacona M, Spinnler H, Ubezio C. A cancellation test: its reliability in assessing attentional deficits in alzheimer's disease. Psychol Med. 1992;22:885–901. doi: 10.1017/S0033291700038460.
    1. Brugnolo A, De Carli F, Accardo J, Amore M, Bosia LE, Bruzzaniti C, et al. An updated Italian normative dataset for the Stroop color word test (SCWT) Neurol Sci. 2016;37:365–372. doi: 10.1007/s10072-015-2428-2.
    1. Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E. Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci. 1996;17:305–309. doi: 10.1007/BF01997792.
    1. Nyhus E, Barceló F. The Wisconsin card sorting test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cogn. 2009;71:437–451. doi: 10.1016/j.bandc.2009.03.005.
    1. Caffarra P, Gardini S, Zonato F, Concari L, Dieci F, Copelli S, et al. Italian norms for the Freedman version of the clock drawing test. J Clin Exp Neuropsychol. 2011;33:982–988. doi: 10.1080/13803395.2011.589373.
    1. Calabria M, Manenti R, Rosini S, Zanetti O, Miniussi C, Cotelli M. Objective and subjective memory impairment in elderly adults: a revised version of the everyday memory questionnaire. Aging Clin Exp Res. 2011;23:67–73. doi: 10.1007/BF03324954.
    1. Raimo S, Trojano L, Siciliano M, Cuoco S, D'Iorio A, Santangelo F, et al. Psychometric properties of the Italian version of the multifactorial memory questionnaire for adults and the elderly. Neurol Sci. 2016;37:681–691. doi: 10.1007/s10072-016-2562-5.
    1. Kumar S, Tran J, Moseson H, Tai C, Glenn JM, Madero EN, et al. The impact of the virtual cognitive health program on the cognition and mental health of older adults: pre-post 12-month pilot study. JMIR Aging. 2018;1:e12031. doi: 10.2196/12031.
    1. Sanchez-Rodriguez E, Biel-Glesson S, Fernandez-Navarro JR, Calleja MA, Espejo-Calvo JA, Gil-Extremera B, et al. Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: a randomized double-blind controlled trial. Nutr. 2019;11:561.
    1. Gutierrez L, Folch A, Rojas M, Cantero JL, Atienza M, Folch J, et al. Effects of nutrition on cognitive function in adults with or without cognitive impairment: a systematic review of randomized controlled clinical trials. Nutr. 2021;13:3728.
    1. Wessels AM, Lines C, Stern RA, Kost J, Voss T, Mozley LH, et al. Cognitive outcomes in trials of two BACE inhibitors in alzheimer's disease. Alzheimers Dement. 2020;16:1483–1492. doi: 10.1002/alz.12164.
    1. Ritchie K, Ropacki M, Albala B, Harrison J, Kaye J, Kramer J, et al. Recommended cognitive outcomes in preclinical alzheimer's disease: consensus statement from the European prevention of alzheimer's dementia project. Alzheimers Dement. 2017;13:186–195. doi: 10.1016/j.jalz.2016.07.154.
    1. Weintraub S, Carrillo MC, Farias ST, Goldberg TE, Hendrix JA, Jaeger J, et al. Measuring cognition and function in the preclinical stage of alzheimer's disease. Alzheimers Dement (N Y) 2018;4:64–75. doi: 10.1016/j.trci.2018.01.003.
    1. Kita M, Obara K, Kondo S, Umeda S, Ano Y. Effect of supplementation of a whey peptide rich in tryptophan-tyrosine-related peptides on cognitive performance in healthy adults: a randomized, double-blind. Placebo-Controlled Study Nutr. 2018;10:899.
    1. Hazlett KE, Figueroa CM, Nielson KA. Executive functioning and risk for Alzheimer's disease in the cognitively intact: family history predicts Wisconsin card sorting test performance. Neuropsychol. 2015;29:582–591. doi: 10.1037/neu0000181.
    1. Boccardi V, Bubba V, Murasecco I, Pigliautile M, Monastero R, Cecchetti R, et al. Serum alkaline phosphatase is elevated and inversely correlated with cognitive functions in subjective cognitive decline: results from the ReGAl 2.0 project. ReGAL 2.0 study group. Aging Clin Exp Res. 2021;33:603–9. doi: 10.1007/s40520-020-01572-6.
    1. Rabin LA, Smart CM, Crane PK, Amariglio RE, Berman LM, Boada M, et al. Subjective cognitive decline in older adults: an overview of self-report measures used across 19 international research studies. J Alzheimers Dis. 2015;48:S63–86. doi: 10.3233/JAD-150154.
    1. Rolandi E, Dodich A, Galluzzi S, Ferrari C, Mandelli S, Ribaldi F, et al. Randomized controlled trial on the efficacy of a multilevel non-pharmacologic intervention in older adults with subjective memory decline: design and baseline findings of the E.Mu.N.I. study. Aging Clin Exp Res. 2020;32:817–826. doi: 10.1007/s40520-019-01403-3.
    1. Gahtan E, Overmier JB. Inflammatory pathogenesis in alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev. 1999;23:615–633. doi: 10.1016/S0149-7634(98)00058-X.
    1. Galimberti D, Schoonenboom N, Scarpini E, Scheltens P. Dutch-Italian alzheimer research group. Chemokines in serum and cerebrospinal fluid of alzheimer's disease patients. Ann Neurol. 2003;53:547–8. doi: 10.1002/ana.10531.
    1. Baune BT, Ponath G, Golledge J, Varga G, Arolt V, Rothermundt M, et al. Association between IL-8 cytokine and cognitive performance in an elderly general population–the MEMO-Study. Neurobiol Aging. 2008;29:937–944. doi: 10.1016/j.neurobiolaging.2006.12.003.
    1. La VD, Zhao L, Epifano F, Genovese S, Grenier D. Anti-inflammatory and wound healing potential of citrus auraptene. J Med Food. 2013;16:961–4. doi: 10.1089/jmf.2013.0029.
    1. Bodet C, La VD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodontal Res. 2008;43:400–407. doi: 10.1111/j.1600-0765.2007.01055.x.
    1. Al-Dosari DI, Ahmed MM, Al-Rejaie SS, Alhomida AS, Ola MS. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutr. 2017;9:1161.
    1. Tseng YT, Hsu HT, Lee TY, Chang WH, Lo YC. Naringenin, a dietary flavanone, enhances insulin-like growth factor 1 receptor-mediated antioxidant defense and attenuates methylglyoxal-induced neurite damage and apoptotic death. Nutr Neurosci. 2021;24:71–81. doi: 10.1080/1028415X.2019.1594554.
    1. Amini-Khoei H, Nasiri Boroujeni S, Maghsoudi F, Rahimi-Madiseh M, Bijad E, Moradi M, et al. Possible involvement of L-arginine-nitric oxide pathway in the antidepressant activity of auraptene in mice. Behav Brain Funct. 2022;18:4. doi: 10.1186/s12993-022-00189-1.
    1. Naraki K, Rezaee R, Karimi G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother Res. 2021;35:4075–4091. doi: 10.1002/ptr.7071.
    1. Askari VR, Rahimi VB, Zargarani R, Ghodsi R, Boskabady M, Boskabady MH. Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol Rep. 2021;73:154–162. doi: 10.1007/s43440-020-00083-5.
    1. Giacomucci G, Mazzeo S, Bagnoli S, Ingannato A, Leccese D, Berti V, et al. Plasma neurofilament light chain as a biomarker of Alzheimer's disease in Subjective Cognitive Decline and Mild Cognitive Impairment. J Neurol. 2022 doi: 10.1007/s00415-022-11055-5.
    1. Ogawa K, Kawasaki A, Yoshida T, Nesumi H, Nakano M, Ikoma Y, et al. Evaluation of auraptene content in citrus fruits and their products. J Agric Food Chem. 2000;48:1763–1769. doi: 10.1021/jf9905525.
    1. Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, et al. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors. 2017;8:495–506. doi: 10.1002/biof.1363.
    1. Chun OK, Lee SG, Wang Y, Vance T, Song WO. Estimated flavonoid intake of the elderly in the United States and around the world. J Nutr Gerontol Geriatr. 2012;31:190–205. doi: 10.1080/21551197.2012.702530.
    1. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137:1244–52. doi: 10.1093/jn/137.5.1244.
    1. Bibak B, Shakeri F, Barreto GE, Keshavarzi Z, Sathyapalan T, Sahebkar A. A review of the pharmacological and therapeutic effects of auraptene. BioFactors. 2019;45:867–879. doi: 10.1002/biof.1550.
    1. Rebello CJ, Beyl RA, Lertora JJL, Greenway FL, Ravussin E, Ribnicky DM. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial. Diabetes Obes Metab. 2020;22:91–98. doi: 10.1111/dom.13868.
    1. Molinuevo JL, Rabin LA, Amariglio R, Buckley R, Dubois B, Ellis KA, et al. Subjective Cognitive Decline Initiative (SCD-I) working group. implementation of subjective cognitive decline criteria in research studies. Alzheimers Dement. 2017;13:296–311. doi: 10.1016/j.jalz.2016.09.012.
    1. Richter Y, Herzog Y, Lifshitz Y, Hayun R, Zchut S. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study. Clin Interv Aging. 2013;8:557–563.
    1. Ban S, Lee SL, Jeong HS, Lim SM, Park S, Hong YS, et al. Efficacy and safety of tremella fuciformis in individuals with subjective cognitive impairment: a randomized controlled trial. J Med Food. 2018;21:400–407. doi: 10.1089/jmf.2017.4063.
    1. McNamara RK, Kalt W, Shidler MD, McDonald J, Summer SS, Stein AL, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018;64:147–156. doi: 10.1016/j.neurobiolaging.2017.12.003.
    1. Kobayashi Y, Kuhara T, Oki M, Xiao JZ. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2019;10:511–520. doi: 10.3920/BM2018.0170.
    1. Fukuda T, Ohnuma T, Obara K, Kondo S, Arai H, Ano Y. Supplementation with matured hop bitter acids improves cognitive performance and mood state in healthy older adults with subjective cognitive decline. J Alzheimers Dis. 2020;76:387–398. doi: 10.3233/JAD-200229.
    1. Cummings J. The role of biomarkers in alzheimer's disease drug development. Adv Exp Med Biol. 2019;1118:29–61. doi: 10.1007/978-3-030-05542-4_2.
    1. Samieri C, Proust-Lima C, Glymour M M, Okereke OI, Amariglio RE, Sperling RA, et al. Subjective cognitive concerns, episodic memory, and the APOE ε4 allele. Alzheimers Dement. 2014;10:752–759. doi: 10.1016/j.jalz.2014.06.012.

Source: PubMed

3
S'abonner