High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

Jacob S Thum, Gregory Parsons, Taylor Whittle, Todd A Astorino, Jacob S Thum, Gregory Parsons, Taylor Whittle, Todd A Astorino

Abstract

Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.

Trial registration: NCT:02981667.

Trial registration: ClinicalTrials.gov NCT02981667.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow chart describing participant recruitment.
Fig 1. Flow chart describing participant recruitment.
Fig 2
Fig 2
Change in a) heart rate, b) blood lactate concentration, c), rating of perceived exertion and d) affect (mean ± SD) in response to high intensity interval training versus continuous exercise. * = p

References

    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sport Exerc. 2011; 43: 1334–59.
    1. Centers for Disease Control and Prevention. Press Release: One in Five Adults Meet Physical Activity Guidelines; 2014. Department of Health and Human Services; Atlanta, GA: U.S.
    1. Sequeira S, Cruz C, Pinto D, Santos L, Marques A. Prevalence of barriers for physical activity in adults according to gender and socioeconomic status. Br J Sports Med. 2011; 45: A18–19.
    1. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults’ participation in physical activity: Review and update. Med Sci Sports Exerc. 2002; 34: 1996–2001. 10.1249/01.MSS.0000038974.76900.92
    1. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. J Physiol. 2012; 590(5): 1077–84. 10.1113/jphysiol.2011.224725
    1. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586: 151–60. 10.1113/jphysiol.2007.142109
    1. Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010; 42(10):1951–58. 10.1249/MSS.0b013e3181d99203
    1. Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011; 41(8): 641–71. 10.2165/11590680-000000000-00000
    1. Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989; 11: 304–17.
    1. Williams DM, Dunsiger S, Ciccoli JT, Lewis BA, Albrecht AE, Marcus BH. Acute affective responses to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychol Sport Exerc. 2008; 9: 231–45. 10.1016/j.psychsport.2007.04.002
    1. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007; 39(4): 665–71. 10.1249/mss.0b013e3180304570
    1. Bartlett JD, Close GL, MacLaren DPM, Gregson W, Drust B, Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J Sports Sci. 2011; 29: 547–53. 10.1080/02640414.2010.545427
    1. Oliveira BRR, Slama FA, Deslandes AC, Furtado ES, Santos TM. Continuous and high-intensity interval training: Which promotes higher pleasure? PLoS One. 2013; 8: e79965 10.1371/journal.pone.0079965
    1. Jung ME, Bourne JE, Little JP. Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLoS One. 2014; 9: e11454.
    1. Kong Z, Fan X, Sun S, Song L, Shi Q, Nie J. Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: a randomized controlled trial. PLoS One. 2016; 11(7): e0158589 10.1371/journal.pone.0158589
    1. Hardcastle SJ, Ray H, Beale L, Hagger MS. Why sprint interval training is inappropriate for a largely sedentary population. Front. Psychol. 2014; 5:1505 10.3389/fpsyg.2014.01505
    1. Astorino TA, Allen RP, Roberson DW, Jurancich M, Lewis R, McCarthy K, et al. Adaptations to high-intensity training are independent of gender. Eur J Appl Physiol. 2011; 111: 1279–86. 10.1007/s00421-010-1741-y
    1. Tucker WJ, Sawyer BJ, Jarrett CJ, Bhammar DM, Gaesser GA. Physiological responses to high-intensity interval exercise differing in interval duration. J Str Cond Res. 2015; 29(12): 3326–35.
    1. Wood KM, LaValle K, Greer K, Bales B, Thompson H, Astorino TA. Effects of two regimens of high intensity interval training (HIIT) on acute physiological and perceptual responses. J Str Cond Res. 2016; 30(1): 244–50.
    1. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Brit J of Nutr. 1978; 40: 497–504.
    1. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980; 12(3): 175–81
    1. Astorino TA, White AC, Dalleck LC. Supramaximal testing to confirm attainment of VO2max in sedentary men and women. Int J Sports Med. 2009; 30(4): 279–84. 10.1055/s-0028-1104588
    1. Devillers A, Hall JI. Rank 3 latin square designs. J Combinatorial Theory Series. 2006; 113(5): 894–902.
    1. Borg G. Borg’s perceived exertion and pain scales. Human Kinetics; 1998.
    1. Kendzierski D, DeCarlo KJ. Physical activity enjoyment scale: Two validation studies. J Sport Exerc Psychol. 1991; 13(1): 50–64.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioral Res Meth 2007;39(2):175–91
    1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 219 2015; U. S. Department of Health and Human Services, Centers of Disease Control and Prevention.
    1. Martinez N, Kilpatrick MW, Salomon K, Jung ME, Little JP. Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. J Sport Exerc Psych. 2015; 37: 138–49.
    1. Astorino TA, Schubert MM, Palumbo E, Stirling D, McMillan DW, Cooper C, et al. Magnitude and time course of changes in maximal oxygen uptake in response to distinct regimens of chronic interval training in sedentary women. Eur J Appl Physiol. 2013; 113: 2361–69. 10.1007/s00421-013-2672-1
    1. Kwan BM, Bryan A. In-task and post-task affective response to exercise: translating exercise intentions into behavior. Brit J Health Psychol. 2010; 15: 115–31.
    1. Smith-Ryan AE. Enjoyment of high-intensity interval training in an overweight/obese cohort: a short report. Clin Physiol Funct Imaging. 2015; (in press).
    1. Laurent CM, Vervaecke LS, Kutz MR, Green JM. Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. J Str Cond Res. 2014; 28: 920–27.
    1. Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, et al. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS One. 2014; 9(11): e111489 10.1371/journal.pone.0111489
    1. Hazell TJ, Olver TD, Macpherson REK, Hamilton CD, Lemon PWR. Sprint interval exercise elicits near maximal peak VO2 during repeated bouts with a rapid recovery within 2 minutes. J Sports Med Phys Fitness. 2014; 54: 750–56.

Source: PubMed

3
S'abonner