Comparison of zero heat flux and double sensor thermometers during spinal anaesthesia: a prospective observational study

Sirkka-Liisa Lauronen, Maija-Liisa Kalliomäki, Jarkko Kalliovalkama, Antti Aho, Heini Huhtala, Arvi M Yli-Hankala, Marja-Tellervo Mäkinen, Sirkka-Liisa Lauronen, Maija-Liisa Kalliomäki, Jarkko Kalliovalkama, Antti Aho, Heini Huhtala, Arvi M Yli-Hankala, Marja-Tellervo Mäkinen

Abstract

Because of the difficulties involved in the invasive monitoring of conscious patients, core temperature monitoring is frequently neglected during neuraxial anaesthesia. Zero heat flux (ZHF) and double sensor (DS) are non-invasive methods that measure core temperature from the forehead skin. Here, we compare these methods in patients under spinal anaesthesia. Sixty patients scheduled for elective unilateral knee arthroplasty were recruited and divided into two groups. Of these, thirty patients were fitted with bilateral ZHF sensors (ZHF group), and thirty patients were fitted with both a ZHF sensor and a DS sensor (DS group). Temperatures were saved at 5-min intervals from the beginning of prewarming up to one hour postoperatively. Bland-Altman analysis for repeated measurements was performed and a proportion of differences within 0.5 °C was calculated as well as Lin`s concordance correlation coefficient (LCCC). A total of 1261 and 1129 measurement pairs were obtained. The mean difference between ZHF sensors was 0.05 °C with 95% limits of agreement - 0.36 to 0.47 °C, 99% of the readings were within 0.5 °C and LCCC was 0.88. The mean difference between ZHF and DS sensors was 0.33 °C with 95% limits of agreement - 0.55 to 1.21 °C, 66% of readings were within 0.5 °C and LCCC was 0.59. Bilaterally measured ZHF temperatures were almost identical. DS temperatures were mostly lower than ZHF temperatures. The mean difference between ZHF and DS temperatures increased when the core temperature decreased.Trial registration: The study was registered in ClinicalTrials.gov on 13th May 2019, Code NCT03408197.

Keywords: Double sensor; Non-invasive core temperature measurement; Spinal anaesthesia; Zero heat flux.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow diagram
Fig. 2
Fig. 2
Bland–Altman plot of the ZHF group. Comparison of bilateral ZHF sensors. ZHF zero heat flux, R right forehead, L left forehead, LoA 95% limits of agreement, CI confidence interval
Fig. 3
Fig. 3
Chronological temperature changes of the right and left ZHF sensors. Mean with standard deviation. ZHF zero heat flux, R sensor placed on the right side of the forehead, L sensor placed on the left side of the forehead
Fig. 4
Fig. 4
Bland–Altman plot of the DS group. Comparison of ZHF and DS temperature measurement methods. ZHF zero heat flux, R right forehead, DS double sensor, LoA 95% limits of agreement, CI confidence interval
Fig. 5
Fig. 5
Chronological temperature changes of the ZHF-R and DS sensors. Mean with standard deviation. ZHF-R zero heat flux sensor placed on the right forehead, DS double sensor placed on the left forehead

References

    1. Arkiliç CF, Akça O, Taguchi A, Sessler DI, Kurz A. Temperature monitoring and management during neuraxial anesthesia: an observational study. Anesth Analg. 2000;91:662–666. doi: 10.1213/00000539-200009000-00031.
    1. Torossian A. Survey on intraoperative temperature management in Europe. Eur J Anaesthesiol. 2007;24:668–675. doi: 10.1017/S0265021507000191.
    1. Matsukawa T, Sessler D, Christensen R, Ozaki M, Schroeder M. Heat flow and distribution during epidural anesthesia. Anesthesiology. 1995;83:961–967. doi: 10.1097/00000542-199511000-00008.
    1. Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg. 1995;80:1007–1014.
    1. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology. 2008;108:71–77. doi: 10.1097/01.anes.0000296719.73450.52.
    1. Reed RL, Johnson TD, Hudson JD, Fischer RP. The disparity between hypothermic coagulopathy and clotting studies. J Trauma. 1992;33:465–470. doi: 10.1097/00005373-199209000-00022.
    1. Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly SB, Beattie C. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA. 1997;277:1127–1134. doi: 10.1001/jama.1997.03540380041029.
    1. Scott AV, Stonemetz JL, Wasey JO, Johnson DJ, Rivers RJ, Koch CG, Frank SM. Compliance with surgical care improvement project for body temperature management (SCIP Inf-10) is associated with improved clinical outcomes. Anesthesiology. 2015;123:116–125. doi: 10.1097/ALN.0000000000000681.
    1. Sun Z, Honar H, Sessler DI, Dalton JE, Yang D, Panjasawatwong K, Deroee AF, Salmasi V, Saager L, Kurz A. Intraoperative core temperature patterns, transfusion requirement, and hospital duration in patients warmed with forced air. Anesthesiology. 2015;122:276–285. doi: 10.1097/ALN.0000000000000551.
    1. Glosten B, Sessler DI, Faure EA, Karl L, Thisted RA. Central temperature changes are poorly perceived during epidural anesthesia. Anesthesiology. 1992;77:10–16. doi: 10.1097/00000542-199207000-00003.
    1. Sessler DI. Perioperative temperature monitoring. Anesthesiology. 2021;134:111–118. doi: 10.1097/ALN.0000000000003481.
    1. Fox R. A new technique for monitoring the deep body temperature in man from the intact skin surface. J Physiol. 1971;212:8–10. doi: 10.1042/cs0440081.
    1. Fox RH, Solman AJ, Isaacs R, Fry AJ, MacDonald IC. A new method for monitoring deep body temperature from the skin surface. Clin Sci. 1973;44:81–86. doi: 10.1042/cs0440081.
    1. Kobayashi T, Nemoto T, Kamiya A, Togawa T. Improvement of deep body thermometer for man. Ann Biomed Eng. 1975;3:181–188. doi: 10.1007/BF02363069.
    1. Togawa T, Nemoto T, Tsuji T, Suma K. Deep temperature monitoring in intensive care. Resuscitation. 1979;7:53–57. doi: 10.1016/0300-9572(79)90015-7.
    1. Eshraghi Y, Nasr V, ParraSanchez I, Van Duren A, Botham M, Santoscoy T, Sessler DI. An evaluation of a zero-heat-flux cutaneous thermometer in cardiac surgical patients. Anesth Analg. 2014;119:543–549. doi: 10.1213/ANE.0000000000000319.
    1. Iden T, Horn E, Bein B, Böhm R, Beese J, Höcker J. Intraoperative temperature monitoring with zero heat flux technology (3M SpotOn sensor) in comparison with sublingual and nasopharyngeal temperature: an observational study. Eur J Anaesthesiol. 2015;32:387–391. doi: 10.1097/EJA.0000000000000232.
    1. Mäkinen M, Pesonen A, Jousela I, Päivärinta J, Poikajärvi S, Albäck A, Salminen U, Pesonen E. Novel zero-heat-flux deep body temperature measurement in lower extremity vascular and cardiac surgery. J Cardiothorac Vasc Anesth. 2016;30:973–978. doi: 10.1053/j.jvca.2016.03.141.
    1. DahyotFizelier C, Lamarche S, Kerforne T, Benard T, Giraud B, Bellier R, Carise E, Frasca D, Mimoz O. Accuracy of zero-heat-flux cutaneous temperature in intensive care adults. Crit Care Med. 2017;45:e715–e717. doi: 10.1097/CCM.0000000000002317.
    1. Kimberger O, Thell R, Schuh M, Koch J, Sessler DI, Kurz A. Accuracy and precision of a novel nonivasive core thermometer. BJA. 2009;103:226–231. doi: 10.1093/bja/aep134.
    1. Kimberger O, Saager L, Egan C, Parra Sanchez I, Dizili S, Koch J, Kurz A. The accuracy of a disposable noninvasive core thermometer. Can J Anaesth. 2013;60:1190–1196. doi: 10.1007/s12630-013-0047-z.
    1. Sastre JA, Pascual MJ, López T. Evaluation of the novel nonivasive zero-heat-flux Tcore™ thermometer in cardiac surgical patients. J Clin Monit Comput. 2019;33:165–172. doi: 10.1007/s10877-018-0143-2.
    1. Gómez-Romero FJ, Fernández-Prada M, Fernández-Suárez FE, Gutiérrez-González C, Estrada-Martínez M, Cachero-Martínez D, Suárez-Fernández S, García-González N, Picatto-Hernández MD, Martínez-Ortega C, Navarro-Gracia JF. Intra-operative temperature monitoring with two nonivasive devices (3M Spoton® and Dräger Tcore®) in comparison with the Swan-Ganz catheter. Cirugia Cardiovasc. 2019;26:191–196. doi: 10.1016/j.circv.2019.06.002.
    1. 3M™ Bair Hugger™ temperature monitoring system (2013). . Accessed Aug 2021
    1. Kimberger O, Quast S (2015) The significance of core temperature: pathophysiology and measurement methods. Drägerwerk AG & Co. . Accessed June 2021
    1. Zou GY. Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual. Stat Methods Med Res. 2013;22:630–642. doi: 10.1177/0962280211402548.
    1. Mackowiak PA, Wasserman SS, Levine MM. a critical appraisal of 98.6°F, the upper limit of the normal body temperature, and other legacies of carl reinhold august wunderlich. JAMA. 1992;268:1578–1580. doi: 10.1001/jama.1992.03490120092034.
    1. Boisson M, Alaux A, Kerforne T, Mimoz O, Debaene B, DahyotFizelier C, Frasca D. Intra-operative cutaneous temperature monitoring with zero-heat-flux technique (3M SpotOn) in comparison with oesophageal and arterial temperature: A prospective observational study. Eur J Anaesthesiol. 2018;35:825–830. doi: 10.1097/EJA.0000000000000822.
    1. Pesonen E, Silvasti-Lundell M, Niemi TT, Kivisaari R, Hernesniemi J, Mäkinen M. The focus of temperature monitoring with zero-heat-flux technology (3M Bair-Hugger): a clinical study with patients undergoing craniotomy. J Clin Monit Comput. 2019;33:917–923. doi: 10.1007/s10877-018-0227-z.
    1. Jack JM, Ellicott H, Jones CI, Bremner SA, Densham I, Harper CM. Determining the accuracy of zero-flux and ingestible thermometers in the peri-operative setting. J Clin Monit Comput. 2019;33:1113–1118. doi: 10.1007/s10877-019-00252-9.
    1. Soehle M, Dehne H, Hoeft A, Zenker S. Accuracy of the nonivasive Tcore™ temperature monitoring system to measure body core temperature in abdominal surgery. J Clin Monit Comput. 2019;34:1361–1367. doi: 10.1007/s10877-019-00430-9.
    1. Lorr D, Lund A, Fredrikson M, Secher NH. Tympanic membrane temperature decreases during head up tilt: relation to frontal lobe oxygenation and middle cerebral artery mean blood flow velocity. Scand J Clin Lab Invest. 2017;77:587–591. doi: 10.1080/00365513.2017.1371323.
    1. Gunga H, Sandsund M, Reinertsen R, Sattler F, Koch J. A non-invasive device to continuously determine heat strain in humans. J Therm Biol. 2008;33:297–307. doi: 10.1016/j.jtherbio.2008.03.004.
    1. Gunga H, Werner A, Stahn A, Steinach M, Schlabs T, Koralewski E, Kunz D, Belavý DL, Felsenberg D, Sattler F. The Double Sensor—a nonivasive device to continuously monitor core temperature in humans on earth and in space. Respir Physiol Neurobiol. 2009;169:S63–S68. doi: 10.1016/j.resp.2009.04.005.
    1. Sessler DI, Lee KA, McGuire J. Isoflurane anesthesia and circadian temperature cycles in humans. Anesthesiology. 1991;75:985–989. doi: 10.1097/00000542-199112000-00010.
    1. Winkler M, Akça O, Birkenberg B, Hetz H, Scheck T, Arkiliç CF, Kabon B, Marker E, Grübl A, Czepan R. Aggressive warming reduces blood loss during hip arthroplasty. 2000;91:978–984. doi: 10.1097/00000539-200010000-00039.
    1. National Institute for Health and Clinical Excellence, (NICE) (2016) Clinical Guideline CG65: The management of inadvertent perioperative hypothermia in adults having surgery. . Accessed Sep 2017
    1. Scholten R, Leijtens B, Kremers K, Snoeck M, Koëter S. The incidence of mild hypothermia after total knee or hip arthroplasty: a study of 2600 patients. J Orthop. 2018;15:408–411. doi: 10.1016/j.jor.2018.03.014.
    1. Matos JR, McSwain JR, Wolf BJ, Doty JW, Wilson SH. Examination of intra-operative core temperature in joint arthroplasty: a single-institution prospective observational study. Int Orthop. 2018;42:2513–2519. doi: 10.1007/s00264-018-3967-y.
    1. West N, Cooke E, Morse D, Merchant RN, Görges M. Zero-heat-flux core temperature monitoring system: an observational secondary analysis to evaluate agreement with naso-/oropharyngeal probe during anesthesia. J Clin Monit Comput. 2020;34:1121–1129. doi: 10.1007/s10877-019-00411-y.

Source: PubMed

3
S'abonner