Evaluation of mitochondrial function in chronic myofascial trigger points - a prospective cohort pilot study using high-resolution respirometry

Michael J Fischer, Gergo Horvath, Martin Krismer, Erich Gnaiger, Georg Goebel, Dominik H Pesta, Michael J Fischer, Gergo Horvath, Martin Krismer, Erich Gnaiger, Georg Goebel, Dominik H Pesta

Abstract

Background: Myofascial trigger points (MTrPs) are hyperirritable areas in the fascia of the affected muscle, possibly related to mitochondrial impairment. They can result in pain and hypoxic areas within the muscle. This pilot study established a minimally invasive biopsy technique to obtain high-quality MTrP tissue samples to evaluate mitochondrial function via high-resolution respirometry. Secondary objectives included the feasibility and safety of the biopsy procedure.

Methods: Twenty healthy males participated in this study, 10 with a diagnosis of myofascial pain in the musculus (m.) trapezius MTrP (TTP group) and 10 with a diagnosis of myofascial pain in the m. gluteus medius (GTP group). Each participant had 2 muscle biopsies taken in one session. The affected muscle was biopsied followed by a biopsy from the m. vastus lateralis to be used as a control. Measurements of oxygen consumption were carried out using high-resolution respirometry.

Results: Mitochondrial respiration was highest in the GTP group compared to the TTP group and the control muscle whereas no differences were observed between the GTP and the control muscle. When normalizing respiration to an internal reference state, there were no differences between muscle groups. None of the participants had hematomas or reported surgical complications. Patient-reported pain was minimal for all 3 groups. All participants reported a low procedural burden.

Conclusions: This pilot study used a safe and minimally invasive technique for obtaining biopsies from MTrPs suitable for high-resolution respirometry analysis of mitochondrial function. The results suggest that there are no qualitative differences in mitochondrial function of MTrPs of the trapezius and gluteus medius muscles compared to the vastus lateralis control muscle, implying that alterations of mitochondrial function do not appear to have a role in the development of MTrPs.

Trial registration: Registered as No. 20131128-850 at the Coordinating Center for Clinical Studies of the Medical University of Innsbruck, trial registration date: 28th November 2013 and retrospectively registered on 11th of October 2018 at ClinicalTrials.gov with the ID NCT03704311 .

Keywords: High-resolution respirometry; Mitochondria; Mitochondrial function; Muscle biopsy; Myofascial trigger points.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Ethical Committee of the Medical University Innsbruck (AN4859 318/4.9) in accordance with the current version (2013) of the Declaration of Helsinki, and it was registered as No. 20131128–850 by the Coordinating Center for Clinical Studies of the Medical University Innsbruck and retrospectively registered on 11th of October 2018 at Consent for publication

Not applicable.

Competing interests

The authors declare that there are no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
High-resolution respirometry with permeabilized fibers from a muscle biopsy sample. Oxygen flux (JO2) is displayed as pmol O2.s− 1.mg− 1 wet weight and changes in response to application of the following substrate-uncoupler-inhibitor titration protocol: mitochondrial leak state without adenylates (LN) after addition of glutamate (G) and malate (M), complex I-supported oxidative phosphorylation capacity (OXPHOS) after addition of ADP (D), pyruvate (P) and cytochrome c (c), complex I-supported electron transfer capacity (ETC) after addition of an uncoupler (U), and succinate-supported ETC after addition of succinate (S), followed by titration of rotenone (Rot); at the end of the protocol, malonic acid (Mna) and antimycin A were added. Abbreviations: CIP = complex I-supported oxidative phosphorylation capacity; CIE = complex I-supported ETC; CIIE = ETC of CII; CI + IIE = maximal ETC of CI and CII; ETC = electron transfer capacity; OXPHOS = oxidative phosphorylation; LN = leak state without adenylates
Fig. 2
Fig. 2
Differences in mass-specific mitochondrial respiration among the different muscle groups. Mass-specific mitochondrial respiration among different muscle groups affected by a myofascial trigger point (m. gluteus medius and m. trapezius) and the unaffected control muscle (m. vastus lateralis) after initiating mitochondrial leak state without adenylates (LN), complex I-supported oxidative phosphorylation capacity (CIP), complex I-supported electron transfer capacity (ETC) of CI (CIE), maximal ETC of CI and CII (CI + IIE) and ETC of CII (CIIE). Abbreviations: TrP M. glut. Med. = musculus gluteus medius trigger point; TrP M. trapezius = musculus trapezius trigger point; CTR M. vast. Lat. = musculus vastus lateralis control muscle; see Fig. 1 for additional abbreviations
Fig. 3
Fig. 3
Respiratory states normalized for the internal reference state of electron transfer capacity (ETC). Normalizing respiration for ETC of CI and CII (CI + IIE) results in flux control ratios, which reflect important mitochondrial qualitative alterations in mitochondrial function. The leak state without adenylates (LN), complex I-supported oxidative phosphorylation capacity (CIP), complex I-supported ETC (CIE), and ETC of CII (CIIE) are displayed, and all states are normalized to maximal ETC of CI and CII (CI + IIE). Abbreviations: TrP M. glut. Med. = musculus gluteus medius trigger point; TrP M. trapezius = musculus trapezius trigger point; CTR M. vast. Lat. = musculus vastus lateralis control muscle; see Fig. 1 for additional abbreviations

References

    1. Simons D, Travell J, Simons L. Travell, Simons & Simons’ myofascial pain and dysfunction: the trigger point manual. 3. Baltimore: Williams & Wilkins; 2019.
    1. Jafri MS. Mechanisms of myofascial pain. Int Sch Res Notices. 2014;2014.
    1. Simons DG. Clinical and etiological update of myofascial pain from trigger points. J Musculoskelet Pain. 1996;4(1–2):93–121. doi: 10.1300/J094v04n01_07.
    1. Bevan S, Quadrello T, McGee R, Madhon M, Vavrosky A, Barham L. Fit for work? Musculoskeletal disorders in the European workforce. London: The Work Foundation; 2009.
    1. Bron C, Dommerholt JD. Etiology of myofascial trigger points. Curr Pain Headache Rep. 2012;16(5):439–444. doi: 10.1007/s11916-012-0289-4.
    1. Shah JP, Thaker N, Heimur J, Aredo JV, Sikdar S, Gerber L. Myofascial trigger points then and now: a historical and scientific perspective. PM R. 2015;7(7):746–761. doi: 10.1016/j.pmrj.2015.01.024.
    1. Alijevic O, Kellenberger S. Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline. J Biol Chem. 2012;287(43):36059–36070. doi: 10.1074/jbc.M112.360487.
    1. Zuil-Escobar JC, Martínez-Cepa CB, Martín-Urrialde JA, Gómez-Conesa A. Prevalence of myofascial trigger points and diagnostic criteria of different muscles in function of the medial longitudinal arch. Arch Phys Med Rehabil. 2015;96(6):1123–1130. doi: 10.1016/j.apmr.2015.02.017.
    1. Chiarotto A, Clijsen R, Fernández-de-las-Peñas C, Barbero M. The prevalence of myofascial trigger points in spinal disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2016;97(2):316–337. doi: 10.1016/j.apmr.2015.09.021.
    1. Fernández-de-las Peñas C, Dommertholt J. Myofascial trigger points: A peripheral or central phenomenon? Current Rheum Rep. 2014;16(1):395. doi: 10.1007/s11926-013-0395-2.
    1. Grieve R, Barnett S, Coghill N, Cramp F. The prevalence of latent myofascial trigger points and diagnostic criteria of the triceps surae and upper trapezius: a cross sectional study. Physiotherapy. 2013;99(4):278–284. doi: 10.1016/j.physio.2013.04.002.
    1. Pal US, Kumar L, Mehta G, Singh N, Singh G, Singh M, et al. Trends in management of myofacial pain. Natl J Maxillofac Surg. 2014;5(2):109–116. doi: 10.4103/0975-5950.154810.
    1. Gerwin R. The taut band and other mysteries of the trigger point: an examination of the mechanisms relevant to the development and maintenance of the trigger point. J Musculoskelet Pain. 2008;16(1–2):115–121. doi: 10.1080/10582450801960081.
    1. Shah JP, Gilliams EA. Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome. J Bodyw Mov Ther. 2008;12(4):371–384. doi: 10.1016/j.jbmt.2008.06.006.
    1. Fischer MJ, Strasser E, Scheibe RJ. Going in deeper and deeper: signal transduction pathways in myofascial trigger points: a narrative review. Int Musculoskelet Med. 2011;33(2):64–74. doi: 10.1179/1753615411Y.0000000003.
    1. Hagberg H. Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP. Pflugers Arch. 1985;404(4):342–347. doi: 10.1007/BF00585346.
    1. Gerdle B, Ghafouri B, Ernberg M, Larsson B. Chronic musculoskeletal pain: review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J Pain Res. 2014;7:313–326. doi: 10.2147/JPR.S59144.
    1. Larsson B, Björk J, Henriksson KG, Gerdle B, Lindman R. The prevalences of cytochrome c oxidase negative and superpositive fibres and ragged-red fibres in the trapezius muscle of female cleaners with and without myalgia and of female healthy controls. Pain. 2000;84(2–3):379–387. doi: 10.1016/S0304-3959(99)00237-7.
    1. Weibel ER, Hoppeler H. Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol. 2005;208(Pt 9):1635–1644. doi: 10.1242/jeb.01548.
    1. Bengtsson A. The muscle in fibromyalgia. Rheumatology (Oxford). 2002;41(7):721–724. doi: 10.1093/rheumatology/41.7.721.
    1. Larsson B, Björk J, Kadi F, Lindman R, Gerdle B. Blood supply and oxidative metabolism in muscle biopsies of female cleaners with and without myalgia. Clin J Pain. 2004;20(6):440–446. doi: 10.1097/00002508-200411000-00009.
    1. Bengtsson A, Henriksson KG, Larsson J. Muscle biopsy in primary fibromyalgia. Light-microscopical and histochemical findings. Scand J Rheumatol. 1986;15(1):1–6. doi: 10.3109/03009748609092661.
    1. Brandão ML, Roselino JE, Piccinato CE, Cherri J. Mitochondrial alterations in skeletal muscle submitted to total ischemia. J Surg Res. 2003;110(1):235–240. doi: 10.1016/S0022-4804(02)00093-8.
    1. Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009;41(10):1837–1845. doi: 10.1016/j.biocel.2009.03.013.
    1. Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2002;543(Pt 1):191–200. doi: 10.1113/jphysiol.2002.019661.
    1. Mogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol. 2006;571(Pt 3):669–681. doi: 10.1113/jphysiol.2005.101691.
    1. Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, et al. Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol. 2001;38(4):947–954. doi: 10.1016/S0735-1097(01)01460-7.
    1. Rasmussen UF, Rasmussen HN. Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem. 2000;208(1–2):37–44. doi: 10.1023/A:1007046028132.
    1. Rasmussen UF, Krustrup P, Bangsbo J, Rasmussen HN. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle. Pflugers Arch. 2001;443(2):180–187. doi: 10.1007/s004240100689.
    1. Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J. Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab. 2001;280(2):E301–E307. doi: 10.1152/ajpendo.2001.280.2.E301.
    1. Bakkman L, Sahlin K, Holmberg HC, Tonkonogi M. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxf). 2007;190(3):243–251. doi: 10.1111/j.1748-1716.2007.01683.x.
    1. Walsh B, Tonkonogi M, Sahlin K. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. Pflugers Arch. 2001;442(3):420–425. doi: 10.1007/s004240100538.
    1. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–581. doi: 10.1172/JCI37048.
    1. Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57(11):2943–2949. doi: 10.2337/db08-0391.
    1. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, et al. Similar qualitative and quantitative changes of mitochondrial respiration following strengths and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1078–R1087. doi: 10.1152/ajpregu.00285.2011.
    1. Bergstrom J. (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–616. doi: 10.3109/00365517509095787.
    1. Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3.
    1. Edgerton VR, Smith JL, Simpson DR. Muscle fibre type populations of human leg muscles. Histochem J. 1975;7(3):259–266. doi: 10.1007/BF01003594.
    1. Jacobs RA, Díaz V, Meinild AK, Gassmann M, Lundby C. The C57Bl/6 mouse serves as a suitable model of human skeletal muscle mitochondrial function. Exp Physiol. 2013;98(4):908–921. doi: 10.1113/expphysiol.2012.070037.
    1. Gnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, et al. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter. Scand J Med Sci Sports. 2015;25(Suppl 4):126–134. doi: 10.1111/sms.12612.
    1. Wall-Scheffler CM, Chumanov E, Steudel-Numbers K, Heiderscheit B. Electromyography activity across gait and incline: The impact of muscular activity on human morphology. Am J Phys Anthropol. 2010;143(4):601–611. doi: 10.1002/ajpa.21356.
    1. Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res. 2016;5(3):182–186. doi: 10.1016/j.imr.2016.07.003.
    1. Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130439. doi: 10.1098/rstb.2013.0439.
    1. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA. 2005;102(15):5618–5623. doi: 10.1073/pnas.0501559102.
    1. Indo HP, Davidson M, Yen HC. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007;7(1–2):106–118. doi: 10.1016/j.mito.2006.11.026.

Source: PubMed

3
S'abonner