Prevalence of Yersinia Species in the Ileum of Crohn's Disease Patients and Controls

Guillaume Le Baut, Claire O'Brien, Paul Pavli, Maryline Roy, Philippe Seksik, Xavier Tréton, Stéphane Nancey, Nicolas Barnich, Madeleine Bezault, Claire Auzolle, Dominique Cazals-Hatem, Jérome Viala, Matthieu Allez, REMIND GROUP, Jean-Pierre Hugot, Anne Dumay, Guillaume Le Baut, Claire O'Brien, Paul Pavli, Maryline Roy, Philippe Seksik, Xavier Tréton, Stéphane Nancey, Nicolas Barnich, Madeleine Bezault, Claire Auzolle, Dominique Cazals-Hatem, Jérome Viala, Matthieu Allez, REMIND GROUP, Jean-Pierre Hugot, Anne Dumay

Abstract

Yersinia are common contaminants of food products, but their prevalence in the human gut is poorly documented. Yersinia have been implicated in Crohn's Disease (CD, an inflammatory bowel disease) however their role in CD is controversial. We performed highly sensitive PCR assays of specific sequences for the gyrB gene of Y. aldovae, Y. bercovieri, Y. enterocolitica, Y. intermedia, Y. mollaretii and the inv gene of Y. pseudotuberculosis. We analyzed a total of 470 ileal samples taken from 338 participants (262 CD patients and 76 controls) belonging to three independent cohorts. All patients and controls were phenotyped and genotyped for the main CD susceptibility variants: NOD2, ATG16L1, and IRGM. Yersinia were found in 7.7% of ileal samples (respectively 7.9 and 7.6% in controls and CD patients) corresponding to 10% of participants (respectively 11.8 and 9.5% in controls and CD patients). Y. enterocolitica, Y. pseudotuberculosis and Y. intermedia were the most frequently identified species. The bacteria were more frequent in resected specimens, lymph nodes and Peyer's patches. Yersinia were no more likely to be detected in CD tissues than tissues from inflammatory and non-inflammatory controls. CD patients treated with immunosuppressants were less likely to be Yersinia carriers. In conclusion, this work shows that Yersinia species are frequently found at low levels in the human ileum in health and disease. The role of Yersinia species in this ecosystem should now be explored.

Keywords: Crohn's disease; gut microbiota; ileal mucosa; innate immunity; molecular test; mucosal immune system; yersinia.

Figures

Figure 1
Figure 1
Validation of the PCR methods. (A) Comparison of GyrB sequences between different Yersinia species and E.coli. In red are indicated the nucleic acids present in all species. In blue is indicated the consensus sequence (Corpet, 1998). YA, Yersinia aldovae; YB, Yersinia bercovieri; YE, Yersinia enterocolitica; YI, Yersinia Intermedia; YM, Yersinia Mollaretii. (B) Specificity of the PCR methods developed for Y. frederiksenii (GyrB). DNAs from several species of Yersinia were amplified with the PCR technique and loaded on an agarose gel. A band indicates the presence of the specific PCR product specific to Y. frederiksenii. (C) Sensitivity of the PCR method developed for Y. enterocolitica (GyrB). The quantity of amplified DNA is expressed as genome equivalents. The method was highly sensitive when two cycles of 35 amplifications were performed.

References

    1. Bottone E. J. (1997). Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10, 257–276.
    1. Chiodini R. J., Dowd S. E., Davis B., Galandiuk S., Chamberlin W. M., Kuenstner J. T., et al. . (2013). Crohn's disease may be differentiated into 2 distinct biotypes based on the detection of bacterial genomic sequences and virulence genes within submucosal tissues. J. Clin. Gastroenterol. 47, 612–620. 10.1097/MCG.0b013e31827b4f94
    1. Corpet F. (1998). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890.
    1. Fonseca D. M., Hand T. W., Han S.-J., Gerner M. Y., Zaretsky A. G., Byrd A. L., et al. . (2015). Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366. 10.1016/j.cell.2015.08.030
    1. Fujimura Y., Kamoi R., Iida M. (1996). Pathogenesis of aphthoid ulcers in Crohn's disease: correlative findings by magnifying colonoscopy, electron microscopy, and immunohistochemistry. Gut 38, 724–732. 10.1136/gut.38.5.724
    1. Fumery M., Seksik P., Auzolle C., Munoz-Bongrand N., Gornet J.-M., Boschetti G., et al. . (2017). Postoperative complications after ileocecal resection in Crohn's Disease: a prospective study from the REMIND Group. Am. J. Gastroenterol. 112, 337–345. 10.1038/ajg.2016.541
    1. Gupta V., Gulati P., Bhagat N., Dhar M. S., Virdi J. S. (2015). Detection of Yersinia enterocolitica in food: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 34, 641–650. 10.1007/s10096-014-2276-7
    1. Han S.-J., Glatman Zaretsky A., Andrade-Oliveira V., Collins N., Dzutsev A., Shaik J., et al. . (2017). White adipose tissue is a reservoir for memory t cells and promotes protective memory responses to infection. Immunity 47, 1154–1168.e6. 10.1016/j.immuni.2017.11.009
    1. Hilbert F., Mayrhofer S., Smulders F. J. (2003). Rapid urease screening of yersinia on CIN agar plates. Intl. J. Food Microbiol. 84, 111–115. 10.1016/S0168-1605(02)00397-5
    1. Hugot J.-P., Alberti C., Berrebi D., Bingen E., Cézard J.-P. (2003). Crohn's disease: the cold chain hypothesis. Lancet 362, 2012–2015. 10.1016/S0140-6736(03)15024-6
    1. Kallinowski F., Wassmer A., Hofmann M. A., Harmsen D., Heesemann J., Karch H., et al. . (1998). Prevalence of enteropathogenic bacteria in surgically treated chronic inflammatory bowel disease. Hepatogastroenterology 45, 1552–1558.
    1. Knösel T., Schewe C., Petersen N., Dietel M., Petersen I. (2009). Prevalence of infectious pathogens in Crohn's disease. Pathol. Res. Pract. 205, 223–230. 10.1016/j.prp.2008.04.018
    1. Krauss E., Agaimy A., Neumann H., Schulz U., Kessler H., Hartmann A., et al. . (2012). Characterization of lymphoid follicles with red ring signs as first manifestation of early Crohn's disease by conventional histopathology and confocal laser endomicroscopy. Int. J. Clin. Exp. Pathol. 5, 411–421.
    1. Lamps L. W., Madhusudhan K. T., Havens J. M., Greenson J. K., Bronner M. P., Chiles M. C., et al. . (2003). Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am. J. Surg. Pathol. 27, 220–227. 10.1097/00000478-200302000-00011
    1. Le Guern A.-S., Martin L., Savin C., Carniel E. (2016). Yersiniosis in France: overview and potential sources of infection. Intl. J. Infect. Dis. 46, 1–7. 10.1016/j.ijid.2016.03.008
    1. Leu S. B., Shulman S. C., Steelman C. K., Lamps L. W., Bulut O. P., Abramowsky C. R., et al. . (2013). Pathogenic yersinia DNA in intestinal specimens of pediatric patients with crohn's disease. Fetal Pediatr. Pathol. 32, 367–370. 10.3109/15513815.2013.768744
    1. Meinzer U., Barreau F., Esmiol-Welterlin S., Jung C., Villard C., Léger T., et al. . (2012). Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11, 337–351. 10.1016/j.chom.2012.02.009
    1. Meinzer U., Esmiol-Welterlin S., Barreau F., Berrebi D., Dussaillant M., Bonacorsi S., et al. . (2008). Nod2 mediates susceptibility to Yersinia pseudotuberculosis in mice. PLoS ONE 3:e2769. 10.1371/journal.pone.0002769
    1. Mun Huang W. (1996). Bacterial diversity based on type ii dna topoisomerase genes. Annu. Rev. Genet. 30, 79–107. 10.1146/annurev.genet.30.1.79
    1. Murthy A., Li Y., Peng I., Reichelt M., Katakam A. K., Noubade R., et al. . (2014). A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462. 10.1038/nature13044
    1. O'Brien C. L., Pavli P., Gordon D. M., Allison G. E. (2014). Detection of bacterial DNA in lymph nodes of Crohn's disease patients using high throughput sequencing. Gut 63, 1596–1606. 10.1136/gutjnl-2013-305320
    1. Özdemir F., Arslan S. (2015). Genotypic and phenotypic virulence characteristics and antimicrobial resistance of Yersinia spp. isolated from meat and milk products: virulence factors of Yersinia spp. J. Food Sci. 80, M1306–M1313. 10.1111/1750-3841.12911
    1. Randolph G. J., Bala S., Rahier J.-F., Johnson M. W., Wang P. L., Nalbantoglu I., et al. . (2016). Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in crohn disease. Am. J. Pathol. 186, 3066–3073. 10.1016/j.ajpath.2016.07.026
    1. Saebo A., Vik E., Lange O. J., Matuszkiewicz L. (2005). Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur. J. Intern. Med. 16, 176–182. 10.1016/j.ejim.2004.11.008
    1. Satsangi J., Silverberg M. S., Vermeire S., Colombel J. F. (2006). The montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55, 749–753. 10.1136/gut.2005.082909
    1. Schweer J., Kulkarni D., Kochut A., Pezoldt J., Pisano F., Pils M. C., et al. . (2013). The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and yop delivery during infection by activation of rho GTPases. PLoS Pathog. 9:e1003746. 10.1371/journal.ppat.1003746
    1. Sihvonen L. M., Hallanvuo S., Haukka K., Skurnik M., Siitonen A. (2011). The ail gene is present in some yersinia enterocolitica biotype 1A strains. Foodborne Pathog. Dis. 8, 455–457. 10.1089/fpd.2010.0747
    1. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., Di Sabatino A., et al. . (2015). A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834. 10.1126/science.aad0135
    1. Thoerner P., Bin Kingombe C. I., Bogli-Stuber K., Bissig-Choisat B., Wassenaar T. M., Frey J., et al. . (2003). PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl. Environ. Microbiol. 69, 1810–1816. 10.1128/AEM.69.3.1810-1816.2003
    1. Tiede I., Fritz G., Strand S., Poppe D., Dvorsky R., Strand D., et al. . (2003). CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111, 1133–1145. 10.1172/JCI16432
    1. Von Der Weid P.-Y., Rainey K. J. (2010). Review article: lymphatic system and associated adipose tissue in the development of inflammatory bowel disease: review: lymphatics, fat and IBD. Aliment. Pharmacol. Ther. 32, 697–711. 10.1111/j.1365-2036.2010.04407.x

Source: PubMed

3
S'abonner