Effects of uric acid on endothelial dysfunction in early chronic kidney disease and its mechanisms

Yu Wang, Xiaorong Bao, Yu Wang, Xiaorong Bao

Abstract

Background: An increase in serum uric acid (UA) occurs during the early and middle stages of chronic kidney disease (CKD) and aggravates the deterioration of kidney function. This study aims to explore the relation between UA and endothelial dysfunction in early CKD and its mechanisms in a murine model.

Methods: The experimental animals were randomly divided into three groups (n = 10): sham-operation group (control group), right nephrectomy only group (CKD group) and right nephrectomy with oxonic potassium group (CKD with hyperuricemia group). Furthermore, we analyzed the relation between UA and endothelial dysfunction indices in early CKD as well as its mechanisms.

Results: Linear regression analysis showed that the level of serum UA had a significant positive correlation with serum endothelin-1 and the percentage of collagen I positive area, but a negative correlation with serum nitric oxide (NO) and NO/endothelin-1 ratio. In addition, the level of serum UA had significant positive correlations with serum malonaldehyde, serum C-reactive protein, serum oxidatively-modified low-density lipoprotein and serum low-density lipoprotein, but a negative correlation with serum superoxide dismutase.

Conclusions: Endothelial dysfunction in the CKD group was significant and had a positive correlation with the level of serum UA. Endothelial dysfunction in early CKD with hyperuricemia is perhaps related to oxidative stress, micro-inflammation and lipid oxidation.

Figures

Figure 1
Figure 1
Pathological pictures of rat kidneys from groups A, B, and C. (A) The normal renal glomerulus of group A (×400). (B) No obvious pathological change in renal tubules of group A (×400). (C, E) Mild glomerular mesangial proliferation in renal glomerulus of groups B and C (×400). (D, F) There were no obvious pathological changes in renal tubules in groups B and C (×400).
Figure 2
Figure 2
Pathological images of rat arteries from groups A, B, and C. (A) Endothelial cells arranged in order under the vascular intima of group A (×400). (B) There was no obvious proliferation of medial smooth muscle cells in the vascular wall of group A (×200). (C) The morphology of endothelial cells of group B was slightly abnormal (×400). (D) There was no obvious proliferation of medial smooth muscle cells in the vascular wall of group B (×200). (E) Endothelial cells of group C had a foam-like change (×400). (F) Endothelial cells of group C shed from the vessel wall (×400). (G, H) Inflammatory cells accumulated in the vascular intima of group C (×400). (I) Neutrophil granulocytes were seen around the endothelial cells of group C (×400). (J) Mononuclear cells were seen around the endothelial cells of group C (×400). (K) Smooth muscle cells of group C proliferated, thickened, and had no order (×200).
Figure 3
Figure 3
Collagen I staining of the vascular wall in groups A, B, and C. (A,B) A small amount of collagen I deposition was seen in the vascular wall of group A (×400). (C) Collagen I component was significantly increased in group C (×400).

References

    1. Gertler MM, Garn SM, Levine SA. Serum uric acid in relation to age and physique in health and in coronary heart disease. Ann Intern Med. 1951;34:1421–1431.
    1. Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, Galasso R, Mancini M, Trevisan M. Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens. 1994;8:677–681.
    1. Freedman DS, Williamson DF, Gunter EW, Byers T. Relation of serum uric acid to mortality and ischemic heart disease: the NHANES I epidemiologic follow-up study. Am J Epidemiol. 1995;141:637–644.
    1. Liese AD, Hense HW, Lowel H, Doring A, Tietze M, Keil U. Association of serum uric acid with all-cause and cardiovascular disease mortality and incident myocardial infarction in the MONICA Augsburg cohort: World Health Organization monitoring trends and determinants in cardiovascular diseases. Epidemiology. 1999;10:391–397. doi: 10.1097/00001648-199907000-00009.
    1. Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, Lakka HM, Lakka TA, Salonen JT. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164:1546–1551. doi: 10.1001/archinte.164.14.1546.
    1. Hajhosseiny R, Khavandi K, Goldsmith DJ. Cardiovascular disease in chronic kidney disease: untying the Gordian knot. Int J Clin Pract. 2013;67:14–31. doi: 10.1111/j.1742-1241.2012.02954.x.
    1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32:S112–S119. doi: 10.1053/ajkd.1998.v32.pm9820470.
    1. Ohno I. Relationship between hyperuricemia and chronic kidney disease. Nucleosides Nucleotides Nucleic Acids. 2011;30:1039–1044. doi: 10.1080/15257770.2011.611484.
    1. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ. Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid Redox Signal. 2005;7:1468–1475. doi: 10.1089/ars.2005.7.1468.
    1. Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med. 2002;30:S302–S312. doi: 10.1097/00003246-200205001-00021.
    1. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia. 2006;8:79–88. doi: 10.1593/neo.05592.
    1. Drexler H, Hornig B. Endothelial dysfunction in human disease. J Mol Cell Cardiol. 1999;31:51–60. doi: 10.1006/jmcc.1998.0843.
    1. Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch. 2010;459:951–958. doi: 10.1007/s00424-009-0763-y.
    1. Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb. 2011;18:1018–1028. doi: 10.5551/jat.9084.
    1. Liao MT, Sung CC, Hung KC, Wu CC, Lo L, Lu KC. Insulin resistance in patients with chronic kidney disease. J Biomed Biotechnol. 2012;2012:691369.
    1. Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745–753.
    1. Fridovich I. The competitive inhibition of uricase by oxonate and by related derivatives of S-triazines. J Biol Chem. 1965;240:2491–2494.
    1. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282:F991–F997.
    1. Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon ES, Oh HY, Kim DK. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol. 2004;24:1246–1252. doi: 10.1161/01.ATV.0000133488.56221.4a.
    1. Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21:132–137. doi: 10.1097/BOR.0b013e3283257b96.
    1. Filiopoulos V, Hadjiyannakos D, Vlassopoulos D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren Fail. 2012;34:510–520. doi: 10.3109/0886022X.2011.653753.
    1. Jalal DI, Chonchol M, Chen W, Targher G. Uric acid as a target of therapy in CKD. Am J Kidney Dis. 2013;61(1):134–146. doi: 10.1053/j.ajkd.2012.07.021.
    1. Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 2008;27:967–978. doi: 10.1080/15257770802257952.
    1. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2008;295:C1183–C1190. doi: 10.1152/ajpcell.00075.2008.
    1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376. doi: 10.1038/288373a0.
    1. Annuk M, Zilmer M, Lind L, Linde T, Fellstrom B. Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol. 2001;12:2747–2752.
    1. Fenster BE, Tsao PS, Rockson SG. Endothelial dysfunction: clinical strategies for treating oxidant stress. Am Heart J. 2003;146:218–226. doi: 10.1016/S0002-8703(02)94796-4.
    1. Vaziri ND, Ni Z, Oveisi F, Liang K, Pandian R. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension. 2002;39:135–141. doi: 10.1161/hy0102.100540.
    1. Kundhal K, Lok CE. Clinical epidemiology of cardiovascular disease in chronic kidney disease. Nephron Clin Pract. 2005;101:c47–c52. doi: 10.1159/000086221.
    1. Arici M, Walls J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 2001;59:407–414. doi: 10.1046/j.1523-1755.2001.059002407.x.
    1. Menon V, Greene T, Wang X, Pereira AA, Marcovina SM, Beck GJ, Kusek JW, Collins AJ, Levey AS, Sarnak MJ. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 2005;68:766–772.
    1. Majumdar A, Wheeler DC. Lipid abnormalities in renal disease. J R Soc Med. 2000;93:178–182.

Source: PubMed

3
S'abonner