Increasing Working Memory Load Reduces Processing of Cross-Modal Task-Irrelevant Stimuli Even after Controlling for Task Difficulty and Executive Capacity

Sharon S Simon, Erich S Tusch, Phillip J Holcomb, Kirk R Daffner, Sharon S Simon, Erich S Tusch, Phillip J Holcomb, Kirk R Daffner

Abstract

The classic account of the load theory (LT) of attention suggests that increasing cognitive load leads to greater processing of task-irrelevant stimuli due to competition for limited executive resource that reduces the ability to actively maintain current processing priorities. Studies testing this hypothesis have yielded widely divergent outcomes. The inconsistent results may, in part, be related to variability in executive capacity (EC) and task difficulty across subjects in different studies. Here, we used a cross-modal paradigm to investigate whether augmented working memory (WM) load leads to increased early distracter processing, and controlled for the potential confounders of EC and task difficulty. Twenty-three young subjects were engaged in a primary visual WM task, under high and low load conditions, while instructed to ignore irrelevant auditory stimuli. Demands of the high load condition were individually titrated to make task difficulty comparable across subjects with differing EC. Event-related potentials (ERPs) were used to measure neural activity in response to stimuli presented in both the task relevant modality (visual) and task-irrelevant modality (auditory). Behavioral results indicate that the load manipulation and titration procedure of the primary visual task were successful. ERPs demonstrated that in response to visual target stimuli, there was a load-related increase in the posterior slow wave, an index of sustained attention and effort. Importantly, under high load, there was a decrease of the auditory N1 in response to distracters, a marker of early auditory processing. These results suggest that increased WM load is associated with enhanced attentional engagement and protection from distraction in a cross-modal setting, even after controlling for task difficulty and EC. Our findings challenge the classic LT and offer support for alternative models.

Keywords: ERPs; executive capacity; load theory; selective attention; working memory.

Figures

FIGURE 1
FIGURE 1
Illustration of an experimental run. Subjects responded to visual target letters (forced choice) while instructed to ignore auditory stimuli. Visual stimuli were presented for 200 ms. Auditory standard and rare stimuli were presented for 250 ms or 125 ms; auditory novel stimuli were presented for 250 ms. The interstimulus interval varied randomly between 315 and 665 ms. (See text for more details.).
FIGURE 2
FIGURE 2
Event-related potential (ERP) data in response to target visual stimuli under the low and high load conditions.(A) Illustrates the grand average waveforms (arrows point to the P3b component and posterior SW); and (B) shows the surface potential maps for the P3b component and the posterior SW.
FIGURE 3
FIGURE 3
Bar graphs illustrating the mean amplitudes of the ERP components under the low and high load conditions.(A) Shows mean amplitude of P3b component and posterior SW in response to target visual stimuli; and (B) illustrates mean amplitude of the N1 component in response to standard auditory stimuli. Error bars indicate standard error of the mean. ∗p < 0.05.
FIGURE 4
FIGURE 4
Scalp topographies and waveforms of PCA factors under the low and high load conditions.(A) Illustrates the PCA factors reflecting the P3b component (TF2SF1) and posterior SW (TF3SF1); and (B) represents the PCA factor reflecting the N1 component (TF4SF1). TF, Temporal Factor. SF, Spatial Factor.
FIGURE 5
FIGURE 5
Event-related potential data in response to standard auditory stimuli under the low and high load conditions.(A) Illustrates the grand average waveform (arrow points to the N1 component); and (B) shows the surface potential maps for the N1 component.

References

    1. Alperin B. R., Haring A. E., Zhuravleva T. Y., Holcomb P. J., Rentz D. M., Daffner K. R. (2013). The dissociation between early and late selection in older adults. J. Cogn. Neurosci. 25 2189–2206. 10.1162/jocn_a_00456
    1. Alperin B. R., Mott K. K., Rentz D. M., Holcomb P. J., Daffner K. R. (2014). Investigating the age-related “anterior shift” in the scalp distribution of the P3b component using principal component analysis. Psychophysiology 51 620–633. 10.1111/psyp.12206
    1. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychological Association.
    1. Baddeley A. (2012). Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63 1–29. 10.1146/annurev-psych-120710-100422
    1. Beaman C. P. (2004). The irrelevant sound phenomenon revisited: what role for working memory capacity? J. Exp. Psychol. Learn. Mem. Cogn. 30 1106–1118. 10.1037/0278-7393.30.5.1106
    1. Benoni H., Tsal Y. (2013). Conceptual and methodological concerns in the theory of perceptual load. Front. Psychol 4:522 10.3389/fpsyg.2013.00522
    1. Berti S., Schroger E. (2003). Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. Eur. J. Neurosci. 17 1119–1122. 10.1046/j.1460-9568.2003.02527.x
    1. Bright P., Jaldow E., Kopelman M. D. (2002). The national adult reading test as a measure of premorbid intelligence: a comparison with estimates derived from demographic variables. J. Int. Neuropsychol. Soc. 8 847–854. 10.1017/S1355617702860131
    1. Broadbent D. E. (1954). The role of auditory localization in attention and memory span. J. Exp. Psychol. 47 191–196. 10.1037/h0054182
    1. Burnham B. R. (2010). Cognitive load modulates attentional capture by color singletons during effortful visual search. Acta Psychol. (Amst.) 135 50–58. 10.1016/j.actpsy.2010.05.003
    1. Chan R. C., Shum D., Toulopoulou T., Chen E. Y. (2008). Assessment of executive functions: review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 23 201–216. 10.1016/j.acn.2007.08.010
    1. Daffner K. R., Chong H., Sun X., Tarbi E. C., Riis J. L., McGinnis S. M., et al. (2011). Mechanisms underlying age- and performance-related differences in working memory. J. Cogn. Neurosci. 23 1298–1314. 10.1162/jocn.2010.21540
    1. de Fockert J. W. (2013). Beyond perceptual load and dilution: a review of the role of working memory in selective attention. Front. Psychol. 4:287 10.3389/fpsyg.2013.00287
    1. de Fockert J. W., Rees G., Frith C. D., Lavie N. (2001). The role of working memory in visual selective attention. Science 291 1803–1806. 10.1126/science.1056496
    1. Delis D., Kaplan E., Kramer J. (2001). Delis Kaplan Executive Function System. San Antonio, TX: Psychological Cooperation.
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21. 10.1016/j.jneumeth.2003.10.009
    1. DeSwart J. H., Kok A., Das-Smaal E. A. (1981). P300 and uncertainty reduction in a concept-identification task. Psychophysiology 18 619–629. 10.1111/j.1469-8986.1981.tb01835.x
    1. Dien J. (2010). The ERP PCA toolkit: an open source program for advanced statistical analysis of event-related potential data. J. Neurosci. Methods 187 138–145. 10.1016/j.jneumeth.2009.12.009
    1. Dien J. (2012). Applying principal components analysis to event-related potentials: a tutorial. Dev. Neuropsychol. 37 497–517. 10.1080/87565641.2012.697503
    1. Dien J., Spencer K. M., Donchin E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Brain Res. Cogn. Brain Res. 17 637–650.
    1. Donchin E. (1981). Presidential address, 1980. Surprise!.Surprise? Psychophysiology 18 493–513. 10.1111/j.1469-8986.1981.tb01815.x
    1. Donchin E., Coles M. G. H. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11 357–374. 10.1017/S0140525X00058027
    1. Ford J. M. (1978). “Does P300 reflect template match/mismatch?,” in Multidisciplinary Perspectives in Event-Related Brain Potential Research, ed. Otto D. A. (Washington, DC: U.S. Government Printing Office; ), 181–183.
    1. Friedman D., Kazmerski V. A., Cycowicz Y. M. (1998). Effects of aging on the novelty P3 during attend and ignore oddball tasks. Psychophysiology 35 508–520. 10.1017/S0048577298970664
    1. Gevins A., Smith M. E., Le J., Leong H., Bennett J., Martin N., et al. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalogr. Clin. Neurophysiol. 98 327–348. 10.1016/0013-4694(96)00288-X
    1. Goldstein A., Spencer K. M., Donchin E. (2002). The influence of stimulus deviance and novelty on the P300 and novelty P3. Psychophysiology 39 781–790. 10.1111/1469-8986.3960781
    1. Hughes R. W., Hurlstone M. J., Marsh J. E., Vachon F., Jones D. M. (2013). Cognitive control of auditory distraction: impact of task difficulty, foreknowledge, and working memory capacity supports duplex-mechanism account. J. Exp. Psychol. Hum. Percept. Perform. 39 539–553. 10.1037/a0029064
    1. Ivnik R. J., Malec J. F., Smith G. E., Tangalos E. G., Petersen R. C. (1996). Neuropsychological tests’ norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, Stroop, TMT, and JLO. Clin. Neuropsychol. 10 262–278.
    1. Johnson R., Jr. (1986). A triarchic model of P300 amplitude. Psychophysiology 23 367–384. 10.1111/j.1469-8986.1986.tb00649.x
    1. Kelley T. A., Lavie N. (2011). Working memory load modulates distractor competition in primary visual cortex. Cereb. Cortex 21 659–665. 10.1093/cercor/bhq139
    1. Kim S. Y., Kim M. S., Chun M. M. (2005). Concurrent working memory load can reduce distraction. Proc. Natl. Acad. Sci. U.S.A. 102 16524–16529. 10.1073/pnas.0505454102
    1. Klemen J., Buchel C., Buhler M., Menz M. M., Rose M. (2010). Auditory working memory load impairs visual ventral stream processing: toward a unified model of attentional load. J. Cogn. Neurosci. 22 437–446. 10.1162/jocn.2009.21204
    1. Kok A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38 557–577. 10.1017/S0048577201990559
    1. Konstantinou N., Bahrami B., Rees G., Lavie N. (2012). Visual short-term memory load reduces retinotopic cortex response to contrast. J. Cogn. Neurosci. 24 2199–2210. 10.1162/jocn_a_00279
    1. Konstantinou N., Beal E., King J. R., Lavie N. (2014). Working memory load and distraction: dissociable effects of visual maintenance and cognitive control. Atten. Percept. Psychophys. 76 1985–1997. 10.3758/s13414-014-0742-z
    1. Konstantinou N., Lavie N. (2013). Dissociable roles of different types of working memory load in visual detection. J. Exp. Psychol. Hum. Percept. Perform. 39 919–924. 10.1037/a0033037
    1. Lavie N. (1995). Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21 451–468. 10.1037/0096-1523.21.3.451
    1. Lavie N. (2005). Distracted and confused?: selective attention under load. Trends Cogn. Sci. 9 75–82. 10.1016/j.tics.2004.12.004
    1. Lavie N., Beck D. M., Konstantinou N. (2014). Blinded by the load: attention, awareness and the role of perceptual load. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 20130205 10.1098/rstb.2013.0205
    1. Lavie N., Cox S. (1997). On the efficiency of visual selective attention: efficient visual search leads to inefficient distractor rejection. Psychol. Sci. 8 395–398. 10.1111/j.1467-9280.1997.tb00432.x
    1. Lavie N., De Fockert J. (2005). The role of working memory in attentional capture. Psychon. Bull. Rev. 12 669–674. 10.3758/BF03196756
    1. Lavie N., Hirst A., de Fockert J. W., Viding E. (2004). Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 133 339–354. 10.1037/0096-3445.133.3.339
    1. Lavie N., Tsal Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Percept. Psychophys. 56 183–197. 10.3758/BF03213897
    1. Lezak M. D., Howieson D. B., Loring D. W. (2004). Neuropsychological Assessment, 4th Edn New York, NY: Oxford University Press.
    1. Lopez-Calderon J., Luck S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 8:213 10.3389/fnhum.2014.00213
    1. Luck S. J. (2005). An Introduction to the Event-Related Potential Technique. Cambridge, MA: The MIT Press.
    1. Lv J., Wang T., Qiu J., Feng S., Tu S., Wei D. (2010). The electrophysiological effect of working memory load on involuntary attention in an auditory–visual distraction paradigm: an ERP study. Exp. Brain Res. 205 81–86. 10.1007/s00221-010-2360-x
    1. McEvoy L. K., Smith M. E., Gevins A. (1998). Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cereb. Cortex 8 563–574. 10.1093/cercor/8.7.563
    1. Mecklinger A., Kramer A. F., Strayer D. L. (1992). Event related potentials and EEG components in a semantic memory search task. Psychophysiology 29 104–119. 10.1111/j.1469-8986.1992.tb02021.x
    1. Munka L., Berti S. (2006). Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity components of the human event-related brain potential. Neurosci. Lett. 396 177–181. 10.1016/j.neulet.2005.11.035
    1. Munte T. F., Schuppert M., Johannes S., Wieringa B. M., Kohlmetz C., Altenmuller E. (1998). Brain potentials in patients with music perception deficits: evidence for an early locus. Neurosci. Lett. 256 85–88. 10.1016/S0304-3940(98)00760-5
    1. Murphy G., Groeger J. A., Greene C. M. (2016). Twenty years of load theory-Where are we now, and where should we go next? Psychon. Bull. Rev. 10.3758/s13423-015-0982-5 [Epub ahead of print].
    1. Näätänen R., Picton T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24 375–425. 10.1111/j.1469-8986.1987.tb00311.x
    1. Otten L. J., Alain C., Picton T. W. (2000). Effects of visual attentional load on auditory processing. Neuroreport 11 875–880. 10.1097/00001756-200003200-00043
    1. Park S., Kim M. S., Chun M. M. (2007). Concurrent working memory load can facilitate selective attention: evidence for specialized load. J. Exp. Psychol. Hum. Percept. Perform. 33 1062–1075. 10.1037/0096-1523.33.5.1062
    1. Pasternak T., Greenlee M. W. (2005). Working memory in primate sensory systems. Nat. Rev. Neurosci. 6 97–107. 10.1038/nrn1603
    1. Porto F. H., Fox A. M., Tusch E. S., Sorond F., Mohammed A. H., Daffner K. R. (2015). In vivo evidence for neuroplasticity in older adults. Brain Res. Bull. 114 56–61. 10.1016/j.brainresbull.2015.03.004
    1. Rees G., Frith C. D., Lavie N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278 1616–1619. 10.1126/science.278.5343.1616
    1. Regenbogen C., De Vos M., Debener S., Turetsky B. I., Mossnang C., Finkelmeyer A., et al. (2012). Auditory processing under cross-modal visual load investigated with simultaneous EEG-fMRI. PLoS ONE 7:e52267 10.1371/journal.pone.0052267
    1. Reitan R., Wolfson D. (1985). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Tucson, AZ: Neuropsychology Press.
    1. Rissman J., Gazzaley A., D’Esposito M. (2009). The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia 47 1637–1646. 10.1016/j.neuropsychologia.2009.01.036
    1. Roper Z. J., Vecera S. P. (2014). Visual short-term memory load strengthens selective attention. Psychon. Bull. Rev. 21 549–556. 10.3758/s13423-013-0503-3
    1. Rose M., Schmid C., Winzen A., Sommer T., Buchel C. (2005). The functional and temporal characteristics of top-down modulation in visual selection. Cereb. Cortex 15 1290–1298. 10.1093/cercor/bhi012
    1. Ruchkin D. S., Johnson R., Jr., Grafman J., Canoune H., Ritter W. (1992). Distinctions and similarities among working memory processes: an event-related potential study. Brain Res. Cogn. Brain Res. 1 53–66. 10.1016/0926-6410(92)90005-C
    1. Ruchkin D. S., Sutton S. (1983). “Positive slow wave and P300: association and disassociation,” in Tutorials in ERP Research: Endogenous Components, eds Gaillard A. W. K., Ritter W. (Amsterdam: North-Holland Publishing; ), 233–250.
    1. Ruchkin D. S., Sutton S., Kietzman M. L., Silver K. (1980). Slow wave and P300 in signal detection. Electroencephalogr. Clin. Neurophysiol. 50 35–47. 10.1016/0013-4694(80)90321-1
    1. Rushby J. A., Barry R. J., Doherty R. J. (2005). Separation of the components of the late positive complex in an ERP dishabituation paradigm. Clin. Neurophysiol. 116 2363–2380. 10.1016/j.clinph.2005.06.008
    1. SanMiguel I., Corral M. J., Escera C. (2008). When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J. Cogn. Neurosci. 20 1131–1145. 10.1162/jocn.2008.20078
    1. Schroder A., van Diepen R., Mazaheri A., Petropoulos-Petalas D., Soto de Amesti V., Vulink N., et al. (2014). Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients. Front. Behav. Neurosci. 8:123 10.3389/fnbeh.2014.00123
    1. Smith E. E., Jonides J. (1999). Storage and executive processes in the frontal lobes. Science 283 1657–1661. 10.1126/science.283.5408.1657
    1. Sörqvist P. (2015). On interpretation of the effects of noise on cognitive performance: the fallacy of confusing the definition of an effect with the explanation of that effect. Front. Psychol. 6:754 10.3389/fpsyg.2015.00754
    1. Sörqvist P., Dahlström O., Karlsson T., Rönnberg J. (2016). Concentration: the neural underpinning of how cognitive load shields agains distraction. Front. Hum. Neurosci. 10:221 10.3389/fnhum.2016.00221
    1. Sörqvist P., Marsh J. E. (2015). How concentration shields against distraction. Curr. Dir. Psychol. Sci. 24 267–272. 10.1177/0963721415577356
    1. Sörqvist P., Nostl A., Halin N. (2012a). Working memory capacity modulates habituation rate: evidence from a cross-modal auditory distraction paradigm. Psychon Bull Rev 19 245–250. 10.3758/s13423-011-0203-9
    1. Sörqvist P., Rönnberg J. (2014). Individual differences in distractibility: an update and a model. Psychol. J. 3 42–57. 10.1002/pchj.47
    1. Sörqvist P., Stenfelt S., Rönnberg J. (2012b). Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention. J. Cogn. Neurosci. 24 2147–2154. 10.1162/jocn_a_00275
    1. Spencer K. M., Dien J., Donchin E. (1999). A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology 36 409–414. 10.1017/S0048577299981180
    1. Spinks J. A., Zhang J. X., Fox P. T., Gao J. H., Hai Tan L. (2004). More workload on the central executive of working memory, less attention capture by novel visual distractors: evidence from an fMRI study. Neuroimage 23 517–524. 10.1016/j.neuroimage.2004.06.025
    1. Spreen O., Strauss E. (1998). A Compendium of Neuropsychological Tests. New York, NY: Oxford University Press.
    1. Squires K. C., Hillyard S. A., Lindsay P. H. (1973). Cortical potentials evoked by confirming and disconfirming feedback following an auditory discrimination. Percept. Psychophys. 13 25–31. 10.3758/BF03207230
    1. Sreenivasan K. K., Katz J., Jha A. P. (2007). Temporal characteristics of top-down modulations during working memory maintenance: an event-related potential study of the N170 component. J. Cogn. Neurosci. 19 1836–1844. 10.1162/jocn.2007.19.11.1836
    1. Watter S., Geffen G. M., Geffen L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology 38 998–1003. 10.1111/1469-8986.3860998
    1. Wechsler D. (2008). Wechsler Adult Intelligence Scale. San Antonio, TX: Pearson.
    1. Woods D. L. (1995). The component structure of the N1 wave of the human auditory evoked potential. Electroencephalogr. Clin. Neurophysiol. Suppl. 44 102–109.
    1. Yi D. J., Woodman G. F., Widders D., Marois R., Chun M. M. (2004). Neural fate of ignored stimuli: dissociable effects of perceptual and working memory load. Nat. Neurosci. 7 992–996. 10.1038/nn1294
    1. Zhang P., Chen X., Yuan P., Zhang D., He S. (2006). The effect of visuospatial attentional load on the processing of irrelevant acoustic distractors. Neuroimage 33 715–724. 10.1016/j.neuroimage.2006.07.015

Source: PubMed

3
S'abonner