Artificial Saliva: Challenges and Future Perspectives for the Treatment of Xerostomia

Dawid Łysik, Katarzyna Niemirowicz-Laskowska, Robert Bucki, Grażyna Tokajuk, Joanna Mystkowska, Dawid Łysik, Katarzyna Niemirowicz-Laskowska, Robert Bucki, Grażyna Tokajuk, Joanna Mystkowska

Abstract

The chronic sensation of a dry mouth is a disease condition called xerostomia and affects a large part of the population. Xerostomia is associated with decreased secretion, or more often, qualitative changes in saliva proteins and immunoglobulin concentrations that develop as a result of salivary gland dysfunction. Several reasons causing dry mouth were described, and usually, they include taking medications, diseases or radiotherapy. In some situations, when it is difficult to use salivary stimulants or salivary gland damage is irreversible, the only option might seem to be saliva substitutes. The paper presents the most important aspects considering saliva preparations. The rheological and lubricating properties and the reconstruction of the complex saliva structure has been the main purpose of research. The biological properties of saliva preparations were also widely discussed. As part of the work, the antimicrobial effect of three commercial saliva preparations was tested. Finally, inadequate antimicrobial properties against the strains isolated from the oral cavity were demonstrated. The development of salivary substitutes, in particular, the improvement of antimicrobial properties, can be achieved using nanotechnology, including drug delivery systems containing nanocarriers.

Keywords: artificial saliva; rheology; xerostomia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A number of articles and citations regarding the terms: (a) “xerostomia”, (b) “artificial saliva” according to the Web of Science database.
Figure 2
Figure 2
Therapeutic options for salivary dysfunction.
Figure 3
Figure 3
Rheological properties of human saliva: (a) viscosity in shear rate function, (b) shear moduli (G’ is an elastic/storage modulus, G” is viscous/loss modulus) in shear strain function.
Figure 4
Figure 4
Diagram of adhesion and biofilm growth (based on [108]).
Figure 5
Figure 5
The impact of commercially available artificial saliva preparations on microorganism adhesion. The graph compared the abilities of tested microorganisms to adhere to wells of polystyrene microtiter plates in the presence of artificial saliva preparations using an adhesion assay that based on CV-staining method.

References

    1. Sreebny L.M. Saliva in health and disease: An appraisal and update. Int. Dent. J. 2000;50:140–161. doi: 10.1111/j.1875-595X.2000.tb00554.x.
    1. Krishnamurthy S. Salivary gland disorders: A comprehensive review. World J. Stomatol. 2015;4:56–71. doi: 10.5321/wjs.v4.i2.56.
    1. Aitken-Saavedra J., Rojas-Alcayaga G., Maturana-Ramírez A., Escobar-álvarez A., Cortes-Coloma A., Reyes-Rojas M., Viera-Sapiain V., Villablanca-Martínez C., Morales-Bozo I. Salivary gland dysfunction markers in type 2 diabetes mellitus patients. J. Clin. Exp. Dent. 2015 doi: 10.4317/jced.52329.
    1. Sasportas L.S., Hosford D.N., Sodini M.A., Waters D.J., Zambricki E.A., Barral J.K., Graves E.E., Brinton T.J., Yock P.G., Le Q.T., et al. Cost-effectiveness landscape analysis of treatments addressing xerostomia in patients receiving head and neck radiation therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013;116:e37–e51. doi: 10.1016/j.oooo.2013.02.017.
    1. Da Silva L., Kupek E., Peres K.G. General health influences episodes of xerostomia: A prospective population-based study. community dent. Oral Epidemiol. 2017;45:153–159. doi: 10.1111/cdoe.12271.
    1. Iwasaki M., Borgnakke W.S., Yoshihara A., Ito K., Ogawa H., Nohno K., Sato M., Minagawa K., Ansai T., Miyazaki H. Hyposalivation and 10-year all-cause mortality in an elderly japanese population. Gerodontology. 2018;35:87–94. doi: 10.1111/ger.12319.
    1. Cardoso R.C., Qazali A., Zaveri J., Chambers M.S., Gunn G.B., Fuller C.D., Lai S.Y., Mott F.E., Hutcheson K.A. Self-reported oral morbidities in long-term oropharyngeal cancer survivors: A cross-sectional survey of 906 survivors. Oral Oncol. 2018;84:88–94. doi: 10.1016/j.oraloncology.2018.07.006.
    1. Villa A., Connell C.L., Abati S. Diagnosis and management of xerostomia and hyposalivation. Ther. Clin. Risk Manag. 2014;11:45–51. doi: 10.2147/TCRM.S76282.
    1. Ship J.A., Fox P.C., Baum B.J. How much saliva is enough? “Normal” function defined. J. Am. Dent. Assoc. 1991;122:63–69. doi: 10.14219/jada.archive.1991.0098.
    1. Navazesh M., Christensen C., Brightman V. Clinical criteria for the diagnosis of salivary gland hypofunction. J. Dent. Res. 1992;71:1363–1369. doi: 10.1177/00220345920710070301.
    1. Navazesh M., Kumar S.K. Measuring salivary flow challenges and opportunities. J. Am. Dent. Assoc. 2008;139:35S–40S. doi: 10.14219/jada.archive.2008.0353.
    1. Lashley K.S. Reflex secretion of the human parotid gland. J. Exp. Psychol. 1916;1:461. doi: 10.1037/h0073282.
    1. Schneyer L.H. Method for the collection of separate submaxillary and sublingual salivas in man. J. Dent. Res. 1955;34:257–261. doi: 10.1177/00220345550340021301.
    1. Eliasson L., Carlén A. An update on minor salivary gland secretions. Eur. J. Oral Sci. 2010;118:435–442. doi: 10.1111/j.1600-0722.2010.00766.x.
    1. Saleh J., Figueiredo M.A.Z., Cherubini K., Salum F.G. Salivary hypofunction: An update on aetiology, diagnosis and therapeutics. Arch. Oral Biol. 2014;60:242–255. doi: 10.1016/j.archoralbio.2014.10.004.
    1. Kumar N.N., Panchaksharappa M.G., Annigeri R.G. Modified schirmer test-a screening tool for xerostomia among subjects on antidepressants. Arch. Oral Biol. 2014;59:829–834. doi: 10.1016/j.archoralbio.2014.05.008.
    1. Tardy M., Dold M., Engel R.R., Leucht S. Flupenthixol versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev. 2014 doi: 10.1002/14651858.CD009227.pub2.
    1. Elad S., Heisler S., Shlit M. Saliva secretion in patients with allergic rhinitis. Int. Arch. Allergy Immunol. 2006;141:276–280. doi: 10.1159/000095297.
    1. Tanghe A., Geerts S., Van Dorpe J., Brichard B., Bruhwyler J., Géczy J. Double-blind randomized controlled study of the efficacy and tolerability of two reversible monoamine oxidase a inhibitors, pirlindole and moclobemide, in the treatment of depression. Acta Psychiatr. Scand. 1997;96:134–141. doi: 10.1111/j.1600-0447.1997.tb09918.x.
    1. Kang J.G., Park C.Y., Kang J.H., Park Y.W., Park S.W. Randomized controlled trial to investigate the effects of a newly developed formulation of phentermine diffuse-controlled release for obesity. Diabetes, Obes. Metab. 2010;12:876–882. doi: 10.1111/j.1463-1326.2010.01242.x.
    1. Oakes T.M., Katona C., Liu P., Robinson M., Raskin J., Greist J.H. Safety and tolerability of duloxetine in elderly patients with major depressive disorder. Int. Clin. Psychopharmacol. 2012;28:1–11. doi: 10.1097/YIC.0b013e32835b09cd.
    1. Nance P.W., Bugaresti J., Shellenberger K., Sheremata W., Martinez-Arizala A. Efficacy and safety of tizanidine in the treatment of spasticity in patients with spinal cord injury. North american tizanidine study group. Neurology. 1994;44:S44–S51.
    1. Habbab K.M., Moles D.R., Porter S.R. Potential oral manifestations of cardiovascular drugs. Oral Dis. 2010;16:769–773. doi: 10.1111/j.1601-0825.2010.01686.x.
    1. De Almeida P.D.V., Grégio A.M.T., Brancher J.A., Ignácio S.A., Machado M.Â.N., de Lima A.A.S., Azevedo L.R. Effects of antidepressants and benzodiazepines on stimulated salivary flow rate and biochemistry composition of the saliva. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008;106:58–65. doi: 10.1016/j.tripleo.2007.11.008.
    1. Todd J., Rees E., Gwilliam B., Davis A. An assessment of the efficacy and tolerability of a “double dose” of normal-release morphine sulphate at bedtime. Palliat. Med. 2002;16:507–512. doi: 10.1191/0269216302pm591oa.
    1. Looström H., Åkerman S., Ericson D., Tobin G., Götrick B. Tramadol-induced oral dryness and pilocarpine treatment: Effects on total protein and IgA. Arch. Oral Biol. 2011;56:395–400. doi: 10.1016/j.archoralbio.2010.10.019.
    1. O’Neill I., Scully C. Biologics in oral medicine: Sjogren syndrome. Oral Dis. 2013;19:121–127. doi: 10.1111/j.1601-0825.2012.01932.x.
    1. Ramos-Casals M., Tzioufas A.G., Stone J.H., Sisó A., Bosch X. Treatment of primary sjögren syndrome: A systematic review. J. Am. Med. Assoc. 2010;304:452–460. doi: 10.1001/jama.2010.1014.
    1. Soell M., Hassan M., Miliauskaite A., Haïkel Y., Selimovic D. The oral cavity of elderly patients in diabetes. Diabetes Metab. 2007;33:S10–S18. doi: 10.1016/S1262-3636(07)80053-X.
    1. Sreebny L.M., Yu A., Green A., Valdini A. Xerostomia in diabetes mellitus. Diabetes Care. 1992;15:900–911. doi: 10.2337/diacare.15.7.900.
    1. Moore P.A., Guggenheimer J., Etzel K.R., Weyant R.J., Orchard T. Type 1 diabetes mellitus, xerostomia, and salivary flow rates. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001;92:281–291. doi: 10.1067/moe.2001.117815.
    1. Anttila S.S., Knuuttila M.L.E., Sakki T.K. Depressive symptoms as an underlying factor of the sensation of dry mouth. Psychosom. Med. 1998;60:215–218. doi: 10.1097/00006842-199803000-00018.
    1. Ohara Y., Hirano H., Yoshida H., Obuchi S., Ihara K., Fujiwara Y., Mataki S. Prevalence and factors associated with xerostomia and hyposalivation among community-dwelling older people in Japan. Gerodontology. 2016;33:20–27. doi: 10.1111/ger.12101.
    1. Wu Y.C., Wang Y.P., Chang J.Y.F., Cheng S.J., Chen H.M., Sun A. Oral manifestations and blood profile in patients with iron deficiency Anemia. J. Formos. Med. Assoc. 2014;113:83–87. doi: 10.1016/j.jfma.2013.11.010.
    1. Dynesen A.W., Bardow A., Petersson B., Nielsen L.R., Nauntofte B. Salivary changes and dental erosion in bulimia nervosa. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008;106:696–707. doi: 10.1016/j.tripleo.2008.07.003.
    1. Siqueira W.L., Siqueira M.F., Mustacchi Z., De Oliveira E., Nicolau J. Salivary parameters in infants aged 12 to 60 months with down syndrome. Spec. Care Dent. 2007;27:202–205. doi: 10.1111/j.1754-4505.2007.tb00347.x.
    1. Saeves R., Nordgarden H., Storhaug K., Sandvik L., Espelid I. Salivary flow rate and oral findings in prader-willi syndrome: A case-control study. Int. J. Paediatr. Dent. 2012;22:27–36. doi: 10.1111/j.1365-263X.2011.01153.x.
    1. Dutta S.K., Orestes M., Vengulekur S., Kwo P. Ethanol and human saliva: Effect of chronic alcoholism on flow rate, composition, and epidermal growth factor. Am. J. Gastroenterol. 1992;87:350–354. doi: 10.1111/j.1572-0241.1992.tb02823.x.
    1. Dyasanoor S., Saddu S.C. Association of xerostomia and assessment of salivary flow using modified schirmer test among smokers and healthy individuals: A preliminutesary study. J. Clin. Diagn. Res. 2014;8:211–213. doi: 10.7860/JCDR/2014/6650.3846.
    1. Götrick B., Giglio D., Tobin G. Effects of amphetamine on salivary secretion. Eur. J. Oral Sci. 2009;117:218–223. doi: 10.1111/j.1600-0722.2009.00629.x.
    1. Saini T., Edwards P.C., Kimmes N.S., Carroll L.R., Shaner J.W., Dowd F.J. Etiology of xerostomia and dental caries among methamphetamine abusers. Oral Health Prev. Dent. 2005;3:189–195.
    1. Dongliang S., Tao Y., Pengcgeng R., Shibin Y. Prevalence and etiology of oral diseases in drug-addicted populations: A systematic review. Int. J. Clin. Exp. Med. 2018;11:6521–6531.
    1. Versteeg P.A., Slot D.E., van der Velden U., van der Weijden G.A. Effect of cannabis usage on the oral environment: A review. Int. J. Dent. Hyg. 2008;6:315–320. doi: 10.1111/j.1601-5037.2008.00301.x.
    1. Meßmer M.B., Thomsen A., Kirste S., Becker G., Momm F. Xerostomia after radiotherapy in the head&neck area: Long-term observations. Radiother. Oncol. 2011;98:48–50. doi: 10.1016/j.radonc.2010.10.013.
    1. Jensen S.B., Pedersen A.M.L., Vissink A., Andersen E., Brown C.G., Davies A.N., Dutilh J., Fulton J.S., Jankovic L., Lopes N.N.F., et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: Prevalence, severity and impact on quality of life. Support. Care Cancer. 2010;18:1039–1060. doi: 10.1007/s00520-010-0827-8.
    1. Deasy J.O., Moiseenko V., Marks L., Chao K.S.C., Nam J., Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:S58–S63. doi: 10.1016/j.ijrobp.2009.06.090.
    1. Wang K., Pearlstein K.A., Moon D.H., Mahbooba Z.M., Deal A.M., Wang Y., Sutton S.R., Motley B.B., Judy G.D., Holmes J.A., et al. Assessment of risk of xerostomia after whole-brain radiation therapy and association with parotid dose. JAMA Oncol. 2019;5:221–228. doi: 10.1001/jamaoncol.2018.4951.
    1. Åstrøm A.N., Lie S.A., Ekback G., Gülcan F., Ordell S. Self-reported dry mouth among ageing people: A longitudinal, cross-national study. Eur. J. Oral Sci. 2019;127:130–138. doi: 10.1111/eos.12601.
    1. Nederfors T., Isaksson R., Mörnstad H., Dahlöf C. Prevalence of perceived symptoms of dry mouth in an adult swedish population—Relation to age, sex and pharmacotherapy. Community Dent. Oral Epidemiol. 1997;25:211–216. doi: 10.1111/j.1600-0528.1997.tb00928.x.
    1. Ghezzi E.M., Ship J.A. Aging and secretory reserve capacity of major salivary glands. J. Dent. Res. 2003;82:844–848. doi: 10.1177/154405910308201016.
    1. Smith C.H., Boland B., Daureeawoo Y., Donaldson E., Small K., Tuomainen J. Effect of aging on stimulated salivary flow in adults. J. Am. Geriatr. Soc. 2013;61:805–808. doi: 10.1111/jgs.12219.
    1. Baum B.J., Kousvelari E.E., Oppenheim F.G. Exocrine protein secretion from human parotid glands during aging: Stable release of the acidic proline-rich proteins. J. Gerontol. 1982;37:392–395. doi: 10.1093/geronj/37.4.392.
    1. Finkelstein M.S., Tanner M., Freedman M.L. Salivary and serum iga levels in a geriatric outpatient population. J. Clin. Immunol. 1984;4:85–91. doi: 10.1007/BF00915040.
    1. Sahibzada H.A., Khurshid Z., Khan R.S., Naseem M., Siddique K.M., Mali M., Zafar M.S. Salivary IL-8, IL-6 and TNF-α as potential diagnostic biomarkers for oral cancer. Diagnostics. 2017;7:21. doi: 10.3390/diagnostics7020021.
    1. Sannam Khan R., Khurshid Z., Akhbar S., Faraz Moin S. Advances of salivary proteomics in oral squamous cell carcinoma (OSCC) detection: An update. Proteomes. 2016;4:41. doi: 10.3390/proteomes4040041.
    1. Khan R., Khurshid Z., Yahya Ibrahim Asiri F. Advancing point-of-care (PoC) testing using human saliva as liquid biopsy. Diagnostics. 2017;7:39. doi: 10.3390/diagnostics7030039.
    1. Levine M.J. Development of Artificial Salivas. [(accessed on 1 April 1993)]; Available online: .
    1. Radvansky L.J., Pace M.B., Siddiqui A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am. J. Health-Syst. Pharm. 2013;70:1025–1032. doi: 10.2146/ajhp120467.
    1. Tanigawa T., Yamashita J.I., Sato T., Shinohara A., Shibata R., Ueda H., Sasaki H. Efficacy and safety of pilocarpine mouthwash in elderly patients with xerostomia. Spec. Care Dent. 2015;35:164–169. doi: 10.1111/scd.12105.
    1. Epstein J.B., Schubert M. Synergistic effect of sialagogues in management of xerostomia after radiation therapy. Oral Surg. Oral Med. Oral Pathol. 1987;64:179–182. doi: 10.1016/0030-4220(87)90087-9.
    1. Chambers M.S., Posner M., Jones C.U., Biel M.A., Hodge K.M., Vitti R., Armstrong I., Yen C., Weber R.S. Cevimeline for the treatment of postirradiation xerostomia in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:1102–1109. doi: 10.1016/j.ijrobp.2007.01.019.
    1. Brimhall J., Jhaveri M.A., Yepes J.F. Efficacy of cevimeline vs. pilocarpine in the secretion of saliva: A Pilot study. Spec. Care Dent. 2013;33:123–127. doi: 10.1111/scd.12010.
    1. Jham B.C., Teixeira I.V., Aboud C.G., Carvalho A.L., de Matos Coelho M., da Silva Freire A.R. A randomized phase III prospective trial of bethanechol to prevent radiotherapy-induced salivary gland damage in patients with head and neck cancer. Oral Oncol. 2007;43:137–142. doi: 10.1016/j.oraloncology.2006.01.013.
    1. Jaguar G.C., Lima E.N.P., Kowalski L.P., Pellizzon A.C., Carvalho A.L., Boccaletti K.W., Alves F.A. Double blind randomized prospective trial of bethanechol in the prevention of radiation-induced salivary gland dysfunction in head and neck cancer patients. Radiother. Oncol. 2015;115:253–256. doi: 10.1016/j.radonc.2015.03.017.
    1. Johnson J.T., Ferretti G.A., Nethery W.J., Valdez I.H., Fox P.C., Ng D., Muscoplat C.C., Gallagher S.C. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N. Engl. J. Med. 2002;329:390–395. doi: 10.1056/NEJM199308053290603.
    1. Wiseman L.R., Faulds D. Oral pilocarpine: A review of its pharmacological properties and clinical potential in xerostomia. Drugs. 1995;49:143–155. doi: 10.2165/00003495-199549010-00010.
    1. Nanni J.M., Nguyen K.H.T., Alford C.E., Robinson C.P., Stewart C.M., Maeda N., Humphreys-Beher M.G. Assessment of bromhexine as a treatment regimen in sjogren’s syndrome- like disease in the NOD (Non-Obese Diabetic) mouse. Clin. Exp. Rheumatol. 1997;15:515–521.
    1. Adachi K., Ono M., Kawamura A., Yuki M., Fujishiro H., Kinoshita Y. Nizatidine and cisapride enhance salivary secretion in humans. Aliment. Pharmacol. Ther. 2002;16:297–301. doi: 10.1046/j.1365-2036.2002.01159.x.
    1. Lomonaco T., Ghimenti S., Biagini D., Bramanti E., Onor M., Bellagambi F.G., Fuoco R., Di Francesco F. The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem. J. 2018;136:255–262. doi: 10.1016/j.microc.2017.02.032.
    1. Gröschl M., Rauh M. Influence of commercial collection devices for saliva on the reliability of salivary steroids analysis. Steroids. 2006;71:1097–1100. doi: 10.1016/j.steroids.2006.09.007.
    1. Strietzel F.P., Lafaurie G.I., Mendoza G.R.B., Alajbeg I., Pejda S., Vuletić L., Mantilla R., Falcào D.P., Leal S.C., Bezerra A.C.B., et al. Efficacy and safety of an intraoral electrostimulation device for xerostomia relief: A multicenter, randomized trial. Arthritis Rheum. 2011;63:180–190. doi: 10.1002/art.27766.
    1. Johnstone P.A.S., Niemtzow R.C., Riffenburgh R.H. Acupuncture for xerostomia: Clinical update. Cancer. 2002;94:1151–1156. doi: 10.1002/cncr.10348.
    1. Fox N.F., Xiao C., Sood A.J., Lovelace T.L., Nguyen S.A., Sharma A., Day T.A. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: A systematic review. Oral Surg. Oral Med., Oral Pathol. Oral Radiol. 2015;120:22–28. doi: 10.1016/j.oooo.2015.03.007.
    1. Teguh D.N., Levendag P.C., Noever I., Voet P., van der Est H., van Rooij P., Dumans A.G., de Boer M.F., van der Huls M.P.C., Sterk W., et al. Early hyperbaric oxygen therapy for reducing radiotherapy side effects: Early results of a randomized trial in oropharyngeal and nasopharyngeal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:711–716. doi: 10.1016/j.ijrobp.2008.11.056.
    1. Hensley M.L., Hagerty K.L., Kewalramani T., Green D.M., Meropol N.J., Wasserman T.H., Cohen G.I., Emami B., Gradishar W.J., Brian Mitchell R., et al. American society of clinical oncology 2008 clinical practice guideline update: Use of chemotherapy and radiation therapy protectants. J. Clin. Oncol. 2009;27:127–145. doi: 10.1200/JCO.2008.17.2627.
    1. Sasse A.D., De Oliveira Clark L.G., Sasse E.C., Clark O.A.C. Amifostine reduces side effects and improves complete response rate during radiotherapy: Results of a meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2006;64:784–791. doi: 10.1016/j.ijrobp.2005.06.023.
    1. Brizel D.M., Wasserman T.H., Henke M., Strnad V., Rudat V., Monnier A., Eschwege F., Zhang J., Russell L., Oster W., et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol. 2000;18:3339–3345. doi: 10.1200/JCO.2000.18.19.3339.
    1. Shan Z., Li J., Zheng C., Liu X., Fan Z., Zhang C., Goldsmith C.M., Wellner R.B., Baum B.J., Wang S. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cdna to irradiated miniature pig parotid glands. Mol. Ther. 2005;11:444–451. doi: 10.1016/j.ymthe.2004.11.007.
    1. Palaniyandi S., Odaka Y., Green W., Abreo F., Caldito G., Benedetti A.D., Sunavala-Dossabhoy G. Adenoviral delivery of tousled kinase for the protection of salivary glands against ionizing radiation damage. Gene Ther. 2011;18:275–282. doi: 10.1038/gt.2010.142.
    1. Baum B.J., Zheng C., Alevizos I., Cotrim A.P., Liu S., McCullagh L., Goldsmith C.M., McDermott N., Chiorini J.A., Nikolov N.P., et al. Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol. 2010;46:4–8. doi: 10.1016/j.oraloncology.2009.09.004.
    1. Lombaert I.M.A., Brunsting J.F., Wierenga P.K., Kampinga H.H., de Haan G., Coppes R.P. Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells. 2008;26:2595–2601. doi: 10.1634/stemcells.2007-1034.
    1. Mystkowska J., Jałbrzykowski M., Dąbrowski J.R. Tribological properties of selected self-made solutions of synthetic saliva. Solid State Phenom. 2013;199:567–572. doi: 10.4028/.
    1. Mystkowska J., Karalus W., Sidorenko J., Dąbrowski J.R., Kalska-Szostko B. Biotribological properties of dentures lubricated with artificial saliva. J. Frict. Wear. 2016;37:544–551. doi: 10.3103/S1068366616060106.
    1. Hahnel S., Behr M., Handel G., Bürgers R. Saliva substitutes for the treatment of radiation-induced xerostomia-a review. Support. Care Cancer. 2009;17:1331–1343. doi: 10.1007/s00520-009-0671-x.
    1. Furness S., Worthington H.V., Bryan G., Birchenough S., McMillan R. Interventions for the management of dry mouth: Topical therapies. Cochrane Database Syst. Rev. 2011 doi: 10.1002/14651858.CD008934.pub2.
    1. Dost F., Farah C.S. Stimulating the discussion on saliva substitutes: A clinical perspective. Aust. Dent. J. 2013;58:11–17. doi: 10.1111/adj.12023.
    1. Gil-Montoya J.A., Silvestre F.J., Barrios R., Silvestre-Rangil J. Treatment of xerostomia and hyposalivation in the elderly: A systematic review. Med. Oral Patol. Oral Cirugia Bucal. 2016;21:e355. doi: 10.4317/medoral.20969.
    1. Vissink A., Waterman H.A., ’s-Gravenmade E.J., Panders A.K., Vermey A. Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide. J. Oral Pathol. Med. 1984;13:22–28. doi: 10.1111/j.1600-0714.1984.tb01397.x.
    1. Van der Reijden W.A., Veerman E.C.I., Nieuw Amerongen A.V. Rheological properties of commercially available polysaccharides with potential use in saliva substitutes. Biorheology. 2017;31:631–642. doi: 10.3233/BIR-1994-31604.
    1. Hatton M.N., Levine M.J., Margarone J.E., Aguirre A. Lubrication and viscosity features of human saliva and commercially available saliva substitutes. J. Oral Maxillofac. Surg. 1987;45:496–499. doi: 10.1016/S0278-2391(87)80009-5.
    1. Park M.S., Chung J.W., Kim Y.K., Chung S.C., Kho H.S. Viscosity and wettability of animal mucin solutions and human saliva. Oral Dis. 2007;13:181–186. doi: 10.1111/j.1601-0825.2006.01263.x.
    1. Kim J., Chang J.Y., Kim Y.Y., Kim M.J., Kho H.S. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase. Arch. Oral Biol. 2018;89:55–64. doi: 10.1016/j.archoralbio.2018.02.007.
    1. Davis S.S. The rheological properties of saliva. Rheol. Acta. 1971;10:28–35. doi: 10.1007/BF01972473.
    1. Schwarz W.H. The rheology of saliva. J. Dent. Res. 1987;66:660–666. doi: 10.1177/00220345870660S109.
    1. Mystkowska J., Łysik D., Klekotka M. Effect of saliva and mucin-based saliva substitutes on fretting processes of 316 austenitic stainless steel. Metals. 2019;9:178. doi: 10.3390/met9020178.
    1. Aguirre A., Mendoza B., Reddy M.S., Scannapieco F.A., Levine M.J., Hatton M.N. Lubrication of selected salivary molecules and artificial salivas. Dysphagia. 1989;4:95–100. doi: 10.1007/BF02407152.
    1. Reeh E.S., Douglas W.H., Levine M.J. Lubrication of saliva substitutes at enamel-to-enamel contacts in an artificial mouth. J. Prosthet. Dent. 1996;75:649–656. doi: 10.1016/S0022-3913(96)90251-6.
    1. Briscoe W.H. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr. Opin. Colloid Interface Sci. 2017;27:1–8. doi: 10.1016/j.cocis.2016.09.002.
    1. Briscoe W.H., Titmuss S., Tiberg F., Thomas R.K., McGillivray D.J., Klein J. Boundary lubrication under water. Nature. 2006;444:191–194. doi: 10.1038/nature05196.
    1. Baker J.L., Bor B., Agnello M., Shi W., He X. Ecology of the oral microbiome: Beyond bacteria. Trends Microbiol. 2017;25:362–374. doi: 10.1016/j.tim.2016.12.012.
    1. Tanasiewicz M., Hildebrandt T., Obersztyn I. Xerostomia of various etiologies: A review of the literature. Adv. Clin. Exp. Med. 2016;25:199–206. doi: 10.17219/acem/29375.
    1. Abstracts of the 2014 International MASCC/ISOO Symposium. [(accessed on 28 May 2014)]; Available online: .
    1. Hou J., Zheng H.M., Li P., Liu H.Y., Zhou H.W., Yang X.J. Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy. Radiother. Oncol. 2018;129:44–51. doi: 10.1016/j.radonc.2018.04.023.
    1. Khovidhunkit S.O.P., Suwantuntula T., Thaweboon S., Mitrirattanakul S., Chomkhakhai U., Khovidhunkit W. Xerostomia, hyposalivation, and oral microbiota in type 2 diabetic patients: A preliminary study. J. Med. Assoc. Thail. 2009;92:1220–1228.
    1. Rosan B., Lamont R.J. Dental plaque formation. Microbes Infect. 2000;2:1599–1607. doi: 10.1016/S1286-4579(00)01316-2.
    1. Marsh P.D. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent. Clin. N. Am. 2010;54:441–454. doi: 10.1016/j.cden.2010.03.002.
    1. Gibbins H.L., Yakubov G.E., Proctor G.B., Wilson S., Carpenter G.H. What interactions drive the salivary mucosal pellicle formation? Coll. Surf. B Biointerfaces. 2014;120:184–192. doi: 10.1016/j.colsurfb.2014.05.020.
    1. Kolenbrander P.E., Palmer R.J., Periasamy S., Jakubovics N.S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010;8:471–480. doi: 10.1038/nrmicro2381.
    1. Glantz P.O. Interfacial phenomena in the oral cavity. Coll. Surf. A Physicochem. Eng. Asp. 1997;123–124:657–670. doi: 10.1016/S0927-7757(96)03817-4.
    1. Tabak L.A., Levine M.J., Mandel I.D., Ellison S.A. Role of salivary mucins in the protection of the oral cavity. J. Oral Pathol. Med. 1982;11:1–17. doi: 10.1111/j.1600-0714.1982.tb00138.x.
    1. Wu A.M., Csako G., Herp A. Structure, biosynthesis, and function of salivary mucins. Mol. Cell. Biochem. 1994;137:39–55. doi: 10.1007/BF00926038.
    1. Zalewska A., Zwierz K., Zółkowski K., Gindzieński A. Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 2000;47:1067–1079.
    1. Yakubov G.E., Macakova L., Wilson S., Windust J.H.C., Stokes J.R. Aqueous lubrication by fractionated salivary proteins: Synergistic interaction of mucin polymer brush with low molecular weight macromolecules. Tribol. Int. 2015;89:34–45. doi: 10.1016/j.triboint.2014.12.025.
    1. Mystkowska J., Niemirowicz-Laskowska K., Łysik D., Tokajuk G., Dąbrowski J.R., Bucki R. The role of oral cavity biofilm on metallic biomaterial surface destruction–corrosion and friction aspects. Int. J. Mol. Sci. 2018;19:743. doi: 10.3390/ijms19030743.
    1. Slomiany B.L., Murty V.L.N., Piotrowski J., Slomiany A. Salivary mucins in oral mucosal defense. Gen. Pharmacol. 1996;27:761–771. doi: 10.1016/0306-3623(95)02050-0.
    1. Werlang C., Cárcarmo-Oyarce G., Ribbeck K. Engineering mucus to study and influence the microbiome. Nat. Rev. Mater. 2019:134–145. doi: 10.1038/s41578-018-0079-7.
    1. Andrysewicz E., Mystkowska J., Dabrowski J.R., Olchowik R. Influence of self-made saliva substitutes on tribological characteristics of human enamel. Acta Bioeng. Biomech. 2014;16:67–74. doi: 10.5277/abb140208.
    1. Michalak G., Głuszek K., Piktel E., Deptuła P., Puszkarz I., Niemirowicz K., Bucki R. Polymeric Nanoparticles—A novel solution for delivery of antimicrobial agents. Med. Stud. 2016;1:56–62. doi: 10.5114/ms.2016.58807.
    1. Niemirowicz K., Durnaś B., Tokajuk G., Głuszek K., Wilczewska A.Z., Misztalewska I., Mystkowska J., Michalak G., Sodo A., Wątek M., et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomed. Nanotechnol. Biol. Med. 2016;12:2395–2404. doi: 10.1016/j.nano.2016.07.006.
    1. Xie W., Guo Z., Gao F., Gao Q., Wang D., Liaw B.S., Cai Q., Sun X., Wang X., Zhao L. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8:3284. doi: 10.7150/thno.25220.
    1. Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012 doi: 10.2147/IJN.S35347.
    1. Niemirowicz K., Swiecicka I., Wilczewska A.Z., Misztalewska I., Kalska-Szostko B., Bienias K., Bucki R., Car H. Gold-functionalized magnetic nanoparticles restrict growth of pseudomonas aeruginosa. Int. J. Nanomed. 2014;7:6003. doi: 10.2147/IJN.S56588.
    1. Taylor E., Webster T.J. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomed. 2011;6:1463.
    1. Park H., Park H.J., Kim J.A., Lee S.H., Kim J.H., Yoon J., Park T.H. Inactivation of pseudomonas aeruginosa pa01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods. 2011;84:41–45. doi: 10.1016/j.mimet.2010.10.010.
    1. Tokajuk G., Niemirowicz K., Deptuła P., Piktel E., Cieśluk M., Wilczewska A.Z., Dąbrowski J.R., Bucki R. Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int. J. Nanomed. 2017;12:7833–7846. doi: 10.2147/IJN.S140661.
    1. Niemirowicz K., Durnaś B., Piktel E., Bucki R. Development of antifungal therapies using nanomaterials. Nanomedicine. 2017;12:1891–1905. doi: 10.2217/nnm-2017-0052.
    1. Niemirowicz K., Bucki R. Enhancing the fungicidal activity of antibiotics: Are magnetic nanoparticles the key? Nanomedicine. 2017:1747–1749. doi: 10.2217/nnm-2017-0051.
    1. Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci. Rep. 2017;7:4610. doi: 10.1038/s41598-017-04653-1.
    1. Niemirowicz K., Surel U., Wilczewska A.Z., Mystkowska J., Piktel E., Gu X., Namiot Z., Kulakowska A., Savage P.B., Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J. Nanobiotechnol. 2015;13:32. doi: 10.1186/s12951-015-0093-5.
    1. Niemirowicz K., Piktel E., Wilczewska A.Z., Markiewicz K.H., Durnaś B., Wątek M., Puszkarz I., Wróblewska M., Niklińska W., Savage P.B., et al. Core–shell magnetic nanoparticles display synergistic antibacterial effects against pseudomonas aeruginosa and staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int. J. Nanomed. 2016;11:5443–5455. doi: 10.2147/IJN.S113706.
    1. Niemirowicz K., Car H., Sadowska A., Wątek M., Krȩtowski R., Cechowska-Pasko M., Wilczewska A.Z., Mystkowska J., Kasacka I., Torres A., et al. Pharmacokinetics and anticancer activity of folic acid-functionalized magnetic nanoparticles. J. Biomed. Nanotechnol. 2017;13:665–677. doi: 10.1166/jbn.2017.2363.
    1. Cole A.J., Yang V.C., David A.E. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29:323–332. doi: 10.1016/j.tibtech.2011.03.001.

Source: PubMed

3
S'abonner