Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation

Behrooz Mamandipoor, Fernando Frutos-Vivar, Oscar Peñuelas, Richard Rezar, Konstantinos Raymondos, Alfonso Muriel, Bin Du, Arnaud W Thille, Fernando Ríos, Marco González, Lorenzo Del-Sorbo, Maria Del Carmen Marín, Bruno Valle Pinheiro, Marco Antonio Soares, Nicolas Nin, Salvatore M Maggiore, Andrew Bersten, Malte Kelm, Raphael Romano Bruno, Pravin Amin, Nahit Cakar, Gee Young Suh, Fekri Abroug, Manuel Jibaja, Dimitros Matamis, Amine Ali Zeggwagh, Yuda Sutherasan, Antonio Anzueto, Bernhard Wernly, Andrés Esteban, Christian Jung, Venet Osmani, Behrooz Mamandipoor, Fernando Frutos-Vivar, Oscar Peñuelas, Richard Rezar, Konstantinos Raymondos, Alfonso Muriel, Bin Du, Arnaud W Thille, Fernando Ríos, Marco González, Lorenzo Del-Sorbo, Maria Del Carmen Marín, Bruno Valle Pinheiro, Marco Antonio Soares, Nicolas Nin, Salvatore M Maggiore, Andrew Bersten, Malte Kelm, Raphael Romano Bruno, Pravin Amin, Nahit Cakar, Gee Young Suh, Fekri Abroug, Manuel Jibaja, Dimitros Matamis, Amine Ali Zeggwagh, Yuda Sutherasan, Antonio Anzueto, Bernhard Wernly, Andrés Esteban, Christian Jung, Venet Osmani

Abstract

Background: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid-base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters.

Methods: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders.

Results: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders.

Conclusion: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes.

Trial registration: NCT02731898 ( https://ichgcp.net/clinical-trials-registry/NCT02731898 ), prospectively registered on April 8, 2016.

Keywords: Critical care medicine; ICU; Machine learning; Mechanical ventilation; Risk stratification.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Linear correlation of variables and the outcome (indicated by Discharge ICU). Note the correlation scale is in the interval − 0.2 to 0.2
Fig. 2
Fig. 2
Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for the overall patient dataset using six standard mechanical ventilation parameters. Panel b. Predictive performance of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders using six standard mechanical ventilation parameters. Confidence intervals are shown in grey for both panels
Fig. 3
Fig. 3
Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for the overall patient dataset, including also variables related to kidney and liver function. Panel b. Predictive performance of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders, including also variables related to kidney and liver function. Confidence intervals are shown in grey for both panels
Fig. 4
Fig. 4
Variable importance ranking for each LSTM model: a) All patients, and b) patients admitted with respiratory disorders
Fig. 5
Fig. 5
Calibration plots for each LSTM model: All patients (left) and patients admitted with respiratory disorders (right)

References

    1. Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med. 2018;48:e13–e14. doi: 10.1016/j.ejim.2017.06.017.
    1. Georgevici AI, Terblanche M. Neural networks and deep learning: a brief introduction. Intensive Care Med. 2019;45(5):712–714. doi: 10.1007/s00134-019-05537-w.
    1. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997 doi: 10.1162/neco.1997.9.8.1735.
    1. Chang M. Artificial intelligence for drug development, precision medicine, and healthcare. 1st ed. Chapman and Hall/CRC; 2020. eBook ISBN 9780429345159. 10.1201/9780429345159.
    1. Sheikhalishahi S, Balaraman V, Osmani V. Benchmarking machine learning models on multi-centre eICU critical care dataset. PLoS ONE. 2020 doi: 10.1371/journal.pone.0235424.
    1. Mlodzinski E, Stone DJ, Celi LA. Machine learning for pulmonary and critical care medicine: a narrative review. Pulm Ther. 2020;6(1):67–77. doi: 10.1007/s41030-020-00110-z.
    1. Meiring C, et al. Optimal intensive care outcome prediction over time using machine learning. PLoS ONE. 2018;13(11):e0206862. doi: 10.1371/journal.pone.0206862.
    1. Wernly B, Mamandipoor B, Baldia P, Jung C, Osmani V. Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation. Int J Med Inform. 2021 doi: 10.1016/j.ijmedinf.2020.104312.
    1. Parreco J, Hidalgo A, Parks JJ, Kozol R, Rattan R. Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. J Surg Res. 2018;228:179–187. doi: 10.1016/j.jss.2018.03.028.
    1. Chen C-Y, Lin W-C, Yang H-Y. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research. Respir Res. 2020;21(1):45. doi: 10.1186/s12931-020-1285-6.
    1. Al-Jaghbeer M, Kellum JA. Acid–base disturbances in intensive care patients: etiology, pathophysiology and treatment. Nephrol Dial Transplant. 2015;30(7):1104–1111. doi: 10.1093/ndt/gfu289.
    1. Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol. 2000;89(4):1645–1655. doi: 10.1152/jappl.2000.89.4.1645.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008 doi: 10.1016/j.jclinepi.2007.11.008.
    1. Esteban A. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345. doi: 10.1001/jama.287.3.345.
    1. Esteban A, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008 doi: 10.1164/rccm.200706-893OC.
    1. Peñuelas O, et al. Mechanical ventilation in Spain, 1998–2016: Epidemiology and outcomes. Med Intensiva. 2021 doi: 10.1016/j.medin.2020.04.024.
    1. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. BBA Protein Struct. 1975 doi: 10.1016/0005-2795(75)90109-9.
    1. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. doi: 10.1186/s12864-019-6413-7.
    1. Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Sci Rep. 2018 doi: 10.1038/s41598-018-35582-2.
    1. Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019 doi: 10.1016/j.ijmedinf.2019.02.002.
    1. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. arXiv Prepr. arXiv1207.0580, 2012.
    1. Paszke A, et al. PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32. Neural information processing systems foundation. 2019.
    1. Longo L, Goebel R, Lecue F, Kieseberg P, Holzinger A. Explainable artificial intelligence: concepts, applications, research challenges and visions. 2020. 10.1007/978-3-030-57321-8_1.
    1. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscipl Rev Data Min Knowl Discov. 2019 doi: 10.1002/widm.1312.
    1. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: 34th International Conference on Machine Learning (ICML), International Machine Learning Society (IMLS). 2017;7:5109–18.
    1. Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks. In: 34th International Conference on Machine Learning (ICML), International Machine Learning Society (IMLS). 2017;3:2130–43.
    1. Bhattacharyya A, Sheikhalishahi S, Dugar S, Krishnan S, Duggal A, Osmani V. 400: Predicting delirium risk for the following 24 hours in critically ill patients using deep learning. Crit Care Med. 2020 doi: 10.1097/01.ccm.0000619952.70488.fb.
    1. Mamandipoor B, Majd M, Moz M, Osmani V. Blood Lactate Concentration Prediction in Critical Care. Stud Health Technol Inform. 2020;270:73–77. doi: 10.3233/SHTI200125.
    1. Mamandipoor B, Majd M, Moz M, Osmani V. Blood lactate concentration prediction in critical care patients: handling missing values. 2019. .
    1. Shillan D, Sterne JAC, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284. doi: 10.1186/s13054-019-2564-9.
    1. Serpa Neto A, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome. JAMA. 2012;308(16):1651. doi: 10.1001/jama.2012.13730.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012;307(23):2526–33. 10.1001/jama.2012.5669.
    1. Davies K, Bourdeaux C, Peiris T, Gould T. Oxygenation index outperforms the P/F ratio for mortality prediction. Crit Care. 2014;18(Suppl 1):266. doi: 10.1186/cc13456.
    1. Neto AS, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome. Crit Care Med. 2015;43(10):2155–2163. doi: 10.1097/CCM.0000000000001189.
    1. Amato MBP, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Aoyama H, Pettenuzzo T, Aoyama K, Pinto R, Englesakis M, Fan E. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome. Crit Care Med. 2018;46(2):300–306. doi: 10.1097/CCM.0000000000002838.
    1. Lerolle N, et al. Increased intensity of treatment and decreased mortality in elderly patients in an intensive care unit over a decade*. Crit Care Med. 2010;38(1):59–64. doi: 10.1097/CCM.0b013e3181b088ec.
    1. Zhao Y, Li Z, Yang T, Wang M, Xi X. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS ONE. 2018;13(6):e0198669. doi: 10.1371/journal.pone.0198669.

Source: PubMed

3
S'abonner