Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy

Marcel Zimmermann, Andreas S Reichert, Marcel Zimmermann, Andreas S Reichert

Abstract

Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.

Keywords: TCA cycle; autophagy; glutamine metabolism; hepatic encephalopathy; hyperammonemia; mitochondrial dysfunction.

© 2021 Marcel Zimmermann and Andreas S. Reichert, published by De Gruyter, Berlin/Boston.

References

    1. Adeva, M.M., Souto, G., Blanco, N., and Donapetry, C. (2012). Ammonium metabolism in humans. Metabolism 61: 1495–1511, .
    1. Albrecht, J. and Norenberg, M.D. (2006). Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44: 788–794, .
    1. Asrani, S.K., Devarbhavi, H., Eaton, J., and Kamath, P.S. (2019). Burden of liver diseases in the world. J. Hepatol. 70: 151–171, .
    1. Atluri, D.K., Asgeri, M., and Mullen, K.D. (2010). Reversibility of hepatic encephalopathy after liver transplantation. Metab. Brain Dis. 25: 111–113, .
    1. Bai, G., Rama Rao, K.V., Murthy, C.R., Panickar, K.S., Jayakumar, A.R., and Norenberg, M.D. (2001). Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66: 981–991, .
    1. Bak, L.K., Iversen, P., Sørensen, M., Keiding, S., Vilstrup, H., Ott, P., Waagepetersen, H.S., and Schousboe, A. (2009). Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab. Brain Dis. 24: 135–145, .
    1. Bernal, W., Donaldson, N., Wyncoll, D., and Wendon, J. (2002). Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study. Lancet 359: 558–563, .
    1. Bessman, S.P. and Bessman, A.N. (1955). The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Invest. 34: 622–628, .
    1. Bobermin, L.D., Roppa, R.H.A., Goncalves, C.A., and Quincozes-Santos, A. (2020). Ammonia-induced glial-inflammaging. Mol. Neurobiol. 57: 3552–3567, .
    1. Brecht, M., Richardson, M., Taranath, A., Grist, S., Thorburn, D., and Bratkovic, D. (2015). Leigh syndrome caused by the MT-ND5 m.13513G>A mutation: a case presenting with WPW-like conduction defect, cardiomyopathy, hypertension and hyponatraemia. JIMD Rep. 19: 95–100, .
    1. Butterworth, R.F. and McPhail, M.J.W. (2019). L-ornithine L-aspartate (LOLA) for hepatic encephalopathy in cirrhosis: results of randomized controlled trials and meta-analyses. Drugs 79: 31–37, .
    1. Chavarria, L., Romero-Gimenez, J., Monteagudo, E., Lope-Piedrafita, S., and Cordoba, J. (2015). Real-time assessment of (1)(3)C metabolism reveals an early lactate increase in the brain of rats with acute liver failure. NMR Biomed. 28: 17–23, .
    1. Cooper, A.J. (2011). 13N as a tracer for studying glutamate metabolism. Neurochem. Int. 59: 456–464, .
    1. Cooper, A.J. and Kuhara, T. (2014). alpha-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab. Brain Dis. 29: 991–1006, .
    1. Cooper, A.J., McDonald, J.M., Gelbard, A.S., Gledhill, R.F., and Duffy, T.E. (1979). The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992, .
    1. Cooper, A.J., Mora, S.N., Cruz, N.F., and Gelbard, A.S. (1985). Cerebral ammonia metabolism in hyperammonemic rats. J. Neurochem. 44: 1716–1723, .
    1. Dadsetan, S., Kukolj, E., Bak, L.K., Sorensen, M., Ott, P., Vilstrup, H., Schousboe, A., Keiding, S., and Waagepetersen, H.S. (2013). Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J. Cerebr. Blood Flow Metabol. 33: 1235–1241, .
    1. Drews, L., Zimmermann, M., Westhoff, P., Brilhaus, D., Poss, R.E., Bergmann, L., Wiek, C., Brenneisen, P., Piekorz, R.P., Mettler-Altmann, T., et al.. (2020). Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis. Model. Mech. 13, .
    1. Frieg, B., Gorg, B., Gohlke, H., and Haussinger, D. (2021). Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol. Chem. 402, 402;1063–1063, .
    1. Görg, B., Bidmon, H.J., Keitel, V., Foster, N., Goerlich, R., Schliess, F., and Häussinger, D. (2006). Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch. Biochem. Biophys. 449: 104–114, .
    1. Görg, B., Karababa, A., Shafigullina, A., Bidmon, H.J., and Häussinger, D. (2015). Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia 63: 37–50, .
    1. Gut, P., Zweckstetter, M., and Banati, R.B. (2015). Lost in translocation: the functions of the 18-kD translocator protein. Trends Endocrinol. Metabol. 26: 349–356, .
    1. Haghighat, N. and McCandless, D.W. (1997). Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cellsin vitro. Metab. Brain Dis. 12: 287–298, .
    1. Häussinger, D. and Sies, H. (2013). Hepatic encephalopathy: clinical aspects and pathogenetic concept. Arch. Biochem. Biophys. 536: 97–100, .
    1. Hawkins, R.A. and Jessy, J. (1991). Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis. Biochem. J. 277: 697–703, .
    1. Hertz, L. and Rothman, D.L. (2017). Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology 6, .
    1. Iversen, P., Sørensen, M., Bak, L.K., Waagepetersen, H.S., Vafaee, M.S., Borghammer, P., Mouridsen, K., Jensen, S.B., Vilstrup, H., Schousboe, A., et al.. (2009). Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology 136: 863–871, .
    1. Jayakumar, A.R. and Norenberg, M.D. (2018). Hyperammonemia in hepatic encephalopathy. J. Clin. Exp. Hepatol. 8: 272–280, .
    1. Johansen, M.L., Bak, L.K., Schousboe, A., Iversen, P., Sorensen, M., Keiding, S., Vilstrup, H., Gjedde, A., Ott, P., and Waagepetersen, H.S. (2007). The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem. Int. 50: 1042–1051, .
    1. Kelly, T. and Rose, C.R. (2010). Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J. Neurochem. 115: 1123–1136, .
    1. Kramer, L., Tribl, B., Gendo, A., Zauner, C., Schneider, B., Ferenci, P., and Madl, C. (2000). Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31: 30–34, .
    1. Kubota, H., Tanabe, Y., Takanashi, J., and Kohno, Y. (2005). Episodic hyponatremia in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS). J. Child Neurol. 20: 116–120, .
    1. Leke, R., Bak, L.K., Anker, M., Melo, T.M., Sorensen, M., Keiding, S., Vilstrup, H., Ott, P., Portela, L.V., Sonnewald, U., et al.. (2011). Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox. Res. 19: 496–510, .
    1. Li, Q., Guo, S., Jiang, X., Bryk, J., Naumann, R., Enard, W., Tomita, M., Sugimoto, M., Khaitovich, P., and Paabo, S. (2016). Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc. Natl. Acad. Sci. U.S.A. 113: 5358–5363, .
    1. Lu, K., Zimmermann, M., Gorg, B., Bidmon, H.J., Biermann, B., Klocker, N., Haussinger, D., and Reichert, A.S. (2019). Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes. EBioMedicine 48: 539–553, .
    1. Master, S., Gottstein, J., and Blei, A.T. (1999). Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30: 876–880, .
    1. Murthy, C.R., Rama Rao, K.V., Bai, G., and Norenberg, M.D. (2001). Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66: 282–288, .
    1. Nicolao, F., Efrati, C., Masini, A., Merli, M., Attili, A.F., and Riggio, O. (2003). Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy. J. Hepatol. 38: 441–446, .
    1. Nissen, J.D., Lykke, K., Bryk, J., Stridh, M.H., Zaganas, I., Skytt, D.M., Schousboe, A., Bak, L.K., Enard, W., Pääbo, S., et al.. (2017). Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia 65: 474–488, .
    1. Nissen, J.D., Pajęcka, K., Stridh, M.H., Skytt, D.M., and Waagepetersen, H.S. (2015). Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia 63: 2313–2326, .
    1. Odeh, M., Sabo, E., Srugo, I., and Oliven, A. (2005). Relationship between tumor necrosis factor-alpha and ammonia in patients with hepatic encephalopathy due to chronic liver failure. Ann. Med. 37: 603–612, .
    1. Oenarto, J., Karababa, A., Castoldi, M., Bidmon, H.J., Görg, B., and Häussinger, D. (2016). Ammonia-induced miRNA expression changes in cultured rat astrocytes. Sci. Rep. 6: 18493, .
    1. Oksanen, M., Lehtonen, S., Jaronen, M., Goldsteins, G., Hamalainen, R.H., and Koistinaho, J. (2019). Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. 76: 2739–2760, .
    1. Ong, J.P., Aggarwal, A., Krieger, D., Easley, K.A., Karafa, M.T., Van Lente, F., Arroliga, A.C., and Mullen, K.D. (2003). Correlation between ammonia levels and the severity of hepatic encephalopathy. Am. J. Med. 114: 188–193, .
    1. Rama Rao, K.V., Jayakumar, A.R., Tong, X., Alvarez, V.M., and Norenberg, M.D. (2010a). Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J. Neuroinflammation 7: 66, .
    1. Rama Rao, K.V., Reddy, P.V., Tong, X., and Norenberg, M.D. (2010b). Brain edema in acute liver failure: inhibition by L-histidine. Am. J. Pathol. 176: 1400–1408, .
    1. Record, C.O., Buxton, B., Chase, R.A., Curzon, G., Murray-Lyon, I.M., and Williams, R. (1976). Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. Eur. J. Clin. Invest. 6: 387–394, .
    1. Schaffer, S.W., Shimada-Takaura, K., Jong, C.J., Ito, T., and Takahashi, K. (2016). Impaired energy metabolism of the taurine-deficient heart. Amino Acids 48: 549–558, .
    1. Schliess, F., Görg, B., Fischer, R., Desjardins, P., Bidmon, H.J., Herrmann, A., Butterworth, R.F., Zilles, K., and Häussinger, D. (2002). Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. Faseb. J. 16: 739–741, .
    1. Sepehrinezhad, A., Zarifkar, A., Namvar, G., Shahbazi, A., and Williams, R. (2020). Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab. Brain Dis. 35: 559–578, .
    1. Sies, H., Haussinger, D., and Grosskopf, M. (1974). Mitochondrial nicotinamide nucleotide systems: ammonium chloride responses and associated metabolic transitions in hemoglobin-free perfused rat liver. Hoppe-Seyler's Z. für Physiol. Chem. 355: 305–320, .
    1. Skytt, D.M., Klawonn, A.M., Stridh, M.H., Pajecka, K., Patruss, Y., Quintana-Cabrera, R., Bolanos, J.P., Schousboe, A., and Waagepetersen, H.S. (2012). siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochem. Int. 61: 490–497, .
    1. Swain, M., Butterworth, R.F., and Blei, A.T. (1992). Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15: 449–453, .
    1. Tofteng, F., Jorgensen, L., Hansen, B.A., Ott, P., Kondrup, J., and Larsen, F.S. (2002). Cerebral microdialysis in patients with fulminant hepatic failure. Hepatology 36: 1333–1340, .
    1. van der Burgh, R. and Boes, M. (2015). Mitochondria in autoinflammation: cause, mediator or bystander? Trends Endocrinol. Metabol. 26: 263–271, .
    1. Vilstrup, H., Amodio, P., Bajaj, J., Cordoba, J., Ferenci, P., Mullen, K.D., Weissenborn, K., and Wong, P. (2014). Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American association for the study of liver diseases and the European association for the study of the liver. Hepatology 60: 715–735, .
    1. Wang, L., Liu, X., Nie, J., Zhang, J., Kimball, S.R., Zhang, H., Zhang, W.J., Jefferson, L.S., Cheng, Z., Ji, Q., et al.. (2015). ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology 61: 486–496, .
    1. Warskulat, U., Görg, B., Bidmon, H.J., Muller, H.W., Schliess, F., and Häussinger, D. (2002). Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40: 324–336, .
    1. Willard-Mack, C.L., Koehler, R.C., Hirata, T., Cork, L.C., Takahashi, H., Traystman, R.J., and Brusilow, S.W. (1996). Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71: 589–599, .
    1. Zamora Nava, L.E. and Delgadillo, A.T. (2011). Minimal hepatic encephalopathy. Ann. Hepatol. 10: S50–S54, .
    1. Zhou, Y., Eid, T., Hassel, B., and Danbolt, N.C. (2020). Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem. Int. 140: 104809, .
    1. Zieminska, E., Dolinska, M., Lazarewicz, J.W., and Albrecht, J. (2000). Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21: 295–300.
    1. Zwingmann, C., Chatauret, N., Leibfritz, D., and Butterworth, R.F. (2003). Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [H-C] nuclear magnetic resonance study. Hepatology 37: 420–428, .

Source: PubMed

3
S'abonner