Evaluation of the Practicability of Biosynex Antigen Self-Test COVID-19 AG+ for the Detection of SARS-CoV-2 Nucleocapsid Protein from Self-Collected Nasal Mid-Turbinate Secretions in the General Public in France

Serge Tonen-Wolyec, Raphaël Dupont, Natalio Awaida, Salomon Batina-Agasa, Marie-Pierre Hayette, Laurent Bélec, Serge Tonen-Wolyec, Raphaël Dupont, Natalio Awaida, Salomon Batina-Agasa, Marie-Pierre Hayette, Laurent Bélec

Abstract

Due to their ease-of-use, lateral flow assay SARS-CoV-2 antigen-detecting rapid diagnostic tests could be suitable candidates for antigen-detecting rapid diagnostic self-test (Ag-RDST). We evaluated the practicability of the Ag-RDST BIOSYNEX Antigen Self-Test COVID-19 Ag+ (Biosynex Swiss SA, Freiburg, Switzerland), using self-collected nasal secretions from the turbinate medium (NMT), in 106 prospectively included adult volunteers living in Paris, France. The majority of the participants correctly understood the instructions for use (94.4%; 95% confidence interval (CI): 88.3-97.4), showing a great ability to perform the entire self-test procedure to obtain a valid and interpretable result (100%; 95% CI: 96.5-100), and demonstrated the ability to correctly interpret test results (96.2%; 95% CI: 94.2-97.5) with a high level of general satisfaction. About one in eight participants (# 15%) needed verbal help to perform or interpret the test, and only 3.8% of test results were misinterpreted. By reference to multiplex real-time RT-PCR, the Ag-RDST showed 90.9% and 100% sensitivity and specificity, respectively, and high agreement (98.1%), reliability (0.94), and accuracy (90.9%) to detect SARS-CoV-2 antigen. Taken together, our study demonstrates the high usability and accuracy of BIOSYNEX Antigen Self-Test COVID-19 Ag+ for supervised self-collected NMT sampling in an unselected adult population living in France.

Keywords: COVID-19; France; N nucleocapsid protein; SARS-CoV-2; antigen; general public; nasal mid-turbinate secretions; rapid diagnostic test; self-test.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Recruitment of study participants.
Figure 2
Figure 2
Panel of 7 BIOSYNEX Antigen Self-Test COVID-19 Ag+ (Biosynex Swiss SA) cassettes, including 3 positive tests (strong positive: n°1; weak positive: n°4; and positive: n°7), 2 negative tests (n°2 and n°5) and 2 invalid tests (n°3 and n°6). Each participant drew and interpreted five of the seven tests and the results were recorded by the observer.
Figure 3
Figure 3
Stacked columns showing the ability of participants to read and interpret (correctly or incorrectly) the 530 results of the BIOSYNEX Antigen Self-Test COVID-19 Ag+ (Biosynex Swiss SA) obtained from successive random selection of a panel of 7 standardized tests, including three positive, two negative, and two invalid test results.

References

    1. Hardan L., Filtchev D., Kassem R., Bourgi R., Lukomska-Szymanska M., Tarhini H., Salloum-Yared F.D., Mancino D., Kharouf N., Haikel Y. COVID-19 and Alzheimer’s Disease: A Literature Review. Medicina. 2021;57:1159. doi: 10.3390/medicina57111159.
    1. Grassly N.C., Pons-Salort M., Parker E.P.K., White P.J., Ferguson N.M., Imperial College COVID-19 Response Team Comparison of molecular testing strategies for COVID-19 control: A mathematical modelling study. Lancet Infect. Dis. 2020;20:1381–1389. doi: 10.1016/S1473-3099(20)30630-7.
    1. Paltiel A.D., Zheng A., Walensky R.P. Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States. JAMA Netw. Open. 2020;3:e2016818. doi: 10.1001/jamanetworkopen.2020.16818.
    1. Smithgall M.C., Dowlatshahi M., Spitalnik S.L., Hod E.A., Rai A.J. Types of Assays for SARS-CoV-2 Testing: A Review. Lab. Med. 2020;51:e59–e65. doi: 10.1093/labmed/lmaa039.
    1. Rai P., Kumar B.K., Deekshit V.K., Karunasagar I., Karunasagar I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021;105:441–455. doi: 10.1007/s00253-020-11061-5.
    1. Dinnes J., Deeks J.J., Adriano A., Berhane S., Davenport C., Dittrich S., Emperador D., Takwoingi Y., Cunningham J., Beese S., et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2020;8:CD013705.
    1. Li D., Li J. Immunologic testing for SARS-CoV-2 infection from the antigen perspective. J. Clin. Microbiol. 2020;59:e02160-20. doi: 10.1128/JCM.02160-20.
    1. European Centre for Disease Prevention and Control Options for the Use of Rapid Antigen Tests for COVID-19 in the EU/EEA and the UK. 19 November 2020. [(accessed on 31 May 2021)]. Available online: .
    1. Toptan T., Eckermann L., Pfeiffer A.E., Hoehl S., Ciesek S., Drosten C., Corman V.M. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread? J. Clin. Virol. 2020;135:104713.
    1. Deitmer T., Dietz A., Chaberny I.F., Pietsch C. [The nasal and pharyngeal swab techniques during the COVID-19-pandemic-the ENT-perspective-SARS-CoV-2, Coronavirus, nasal swab, pharyngeal swab, complications] Laryngo-Rhino-Otologie. 2021;100:517–525.
    1. Centers for Disease Control and Prevention (CDC) Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens for COVID-19. Updated 26 February 2021. [(accessed on 31 May 2021)]; Available online: .
    1. Lindner A.K., Nikolai O., Kausch F., Wintel M., Hommes F., Gertler M., Krüger L.J., Gaeddert M., Tobian F., Lainati F., et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected nasal swab versus professional-collected nasopharyngeal swab. Eur. Respir J. 2021;57:2003961. doi: 10.1183/13993003.03961-2020.
    1. Nikolai O., Rohardt C., Tobian F., Junge A., Corman V.M., Jones T.C., Gaeddert M., Lainati F., Sacks J.A., Seybold J., et al. Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: Does localisation or professional collection matter? MedRxiv. 2021 doi: 10.1080/23744235.2021.1969426.
    1. Klein J.A.F., Krüger L.J., Tobian F., Gaeddert M., Lainati F., Schnitzler P., Lindner A.K., Nikolai O., Knorr B., Welker A., et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. Med. Microbiol. Immunol. 2021;210:181–186. doi: 10.1007/s00430-021-00710-9.
    1. Krüger L.J., Klein J.A.F., Tobian F., Gaeddert M., Lainati F., Klemm S., Schnitzler P., Bartenschlager R., Cerikan B., ACE-IT Study Group et al. Evaluation of accuracy, exclusivity, limit-of-detection and ease-of-use of LumiraDx™: An antigen-detecting point-of-care device for SARS-CoV-2. Infection. 2021:1–12. doi: 10.1007/s15010-021-01681-y.
    1. Liao W.T., Hsu M.Y., Shen C.F., Hung K.F., Cheng C.M. Home Sample Self-Collection for COVID-19 Patients. Adv. Biosyst. 2020;4:e2000150. doi: 10.1002/adbi.202000150.
    1. Boum Y., Eyangoh S., Okomo M.C. Beyond COVID-19-will self-sampling and testing become the norm? Lancet Infect. Dis. 2021;21:1194–1195. doi: 10.1016/S1473-3099(21)00197-3.
    1. Larremore D.B., Wilder B., Lester E., Shehata S., Burke J.M., Hay J.A., Tambe M., Mina M.J., Parker R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2020;7:eabd5393. doi: 10.1126/sciadv.abd5393.
    1. Mercer T.R., Salit M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021;22:415–426.
    1. Peacock F.W., Dzieciatkowski T., Chirico F., Szarpak L. Self-testing with antigen tests as a method for reduction SARS-CoV-2. Am. J. Emerg. Med. 2021 doi: 10.1016/j.ajem.2021.05.010.
    1. Goggolidou P., Hodges-Mameletzis I., Purewal S., Karakoula A., Warr T. Self-Testing as an Invaluable Tool in Fighting the COVID-19 Pandemic. J. Prim. Care Community Health. 2021;12:21501327211047782. doi: 10.1177/21501327211047782.
    1. Figueroa C., Johnson C., Ford N., Sands A., Dalal S., Meurant R., Prat I., Hatzold K., Urassa W., Baggaley R. Reliability of HIV rapid diagnostic tests for self-testing compared with testing by health-care workers: A systematic review and meta-analysis. Lancet HIV. 2018;5:e277–e290. doi: 10.1016/S2352-3018(18)30044-4.
    1. Rivera A.S., Hernandez R., Mag-Usara R., Sy K.N., Ulitin A.R., O’Dwyer L.C., McHugh M.C., Jordan N., Hirschhorn L.R. Implementation outcomes of HIV self-testing in low- and middle- income countries: A scoping review. PLoS ONE. 2021;16:e0250434. doi: 10.1371/journal.pone.0250434.
    1. FDA News Release. Coronavirus (COVID-19) Update: FDA Issues New Authorization for the BinaxNOW COVID-19 Ag Card Home Test. 16 December 2020. [(accessed on 27 May 2021)]; Available online: .
    1. Osmanodja B., Budde K., Zickler D., Naik M.G., Hofmann J., Gertler M., Hülso C., Rössig H., Horn P., Seybold J., et al. Accuracy of a Novel SARS-CoV-2 Antigen-Detecting Rapid Diagnostic Test from Standardized Self-Collected Anterior Nasal Swabs. J. Clin. Med. 2021;10:2099. doi: 10.3390/jcm10102099.
    1. Stohr J.J.J.M., Zwart V.F., Goderski G., Meijer A., Nagel-Imming C.R.S., Kluytmans-van den Bergh M.F.Q., Pas S.D., van den Oetelaar F., Hellwich M., Gan K.H., et al. Self-testing for the detection of SARS-CoV-2 infection with rapid antigen tests for people with suspected COVID-19 in the community. Clin. Microbiol. Infect. 2021 doi: 10.1016/j.cmi.2021.07.039.
    1. World Health Organization (WHO) WHO prequalification: Sample Product Dossier for an IVD Intended for HIV Self-Testing. SIMU™ Self-Test for HIV 12O Working Document, December 2015. [(accessed on 21 May 2021)]. Available online: .
    1. Prazuck T., Karon S., Gubavu C., Andre J., Legall J.M., Bouvet E., Kreplak G., Teglas J.P., Pialoux G. A finger-stick whole-blood HIV self-test as an HIV screening tool adapted to the general public. PLoS ONE. 2016;11:e0146755. doi: 10.1371/journal.pone.0146755.
    1. Tonen-Wolyec S., Batina-Agasa S., Muwonga J., Fwamba N’kulu F., Mboumba Bouassa R.S., Belec L. Evaluation of the practicability and virological performance of finger-stick whole-blood HIV self-testing in French-speaking sub-Saharan Africa. PLoS ONE. 2018;13:e0189475. doi: 10.1371/journal.pone.0189475.
    1. Tonen-Wolyec S., Dupont R., Batina-Agasa S., Hayette M.P., Bélec L. Capillary whole-blood IgG-IgM COVID-19 self-test as a serological screening tool for SARS-CoV-2 infection adapted to the general public. PLoS ONE. 2020;15:e0240779. doi: 10.1371/journal.pone.0240779.
    1. Journal Officiel de la République Française. Arrêté du 16 Octobre 2020 Modifiant l’arrêté du 10 Juillet 2020 Prescrivant les Mesures Générales Nécessaires Pour Faire Face à l’épidémie de Covid-19 Dans les Territoires Sortis de l’état d’urgence Sanitaire et Dans Ceux où il a été Prorogé—Légifrance JORF n°0253 du 17 Octobre 2020. [(accessed on 27 May 2021)]. Available online: .
    1. Journal Officiel de la République Française. Arrêté du 12 Décembre 2020 Portant Modification des Conditions de Remboursement de l’acte de Détection du Génome du SARS-CoV-2 Par Amplification Génique. [(accessed on 27 May 2021)]. Available online: .
    1. Haute Autorité de Santé, Saint-Denis, France, 6 mars 2020. Avis n°2020.0020/AC/SEAP du 6 Mars 2020 du Collège de la HAS relatif à l’inscription Sur la LAP Mentionnée à l’article L. 162-1-7 du CSS, de la Détection du Génome du Coronavirus SARS-CoV-2 par Technique de Transcription Inverse Suivie d’une Amplification. [(accessed on 27 May 2021)]. Available online: .
    1. Newcombe R.G. Two-sided confidence intervals for the single proportion: Comparison of 362 seven methods. Stat. Med. 1998;17:857–872. doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>;2-E.
    1. Cohen J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960;20:37–46. doi: 10.1177/001316446002000104.
    1. Landlis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Youden W.J. Index for rating diagnostic tests. Cancer. 1950;3:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Journal Officiel de la République Française. Ordonnance n° 2010-49 du 13 Janvier 2010 Relative à la Biologie Médicale. [(accessed on 21 January 2021)]. Available online:
    1. Haute Autorité de Santé, Saint-Denis, France, 23 avril 2021. Avis n° 2021.0029/AC/SEAP du 23 Avril 2021 du Collège de la HAS Relatif à la Détection Antigénique Rapide du Virus SARS-CoV-2 sur Prélèvement Nasal (TDR, TROD et Autotest) [(accessed on 27 May 2021)]. Available online: .
    1. Tonen-Wolyec S., Mboup S., Grésenguet G., Bouassa R.B., Bélec L. Insufficient education is a challenge for HIV self-testing. Lancet HIV. 2018;5:e341. doi: 10.1016/S2352-3018(18)30141-3.
    1. World Health Organization Guidelines on HIV Self-Testing and Partner Notification: Supplement to Consolidated Guidelines on HIV Testing Services. December 2016. [(accessed on 28 May 2021)]. Available online: .
    1. Ortblad K.F., Musoke D.K., Ngabirano T., Nakitende A., Haberer J.E., McConnell M., Salomon J.A., Bärnighausen T., Oldenburg C.E. Female sex workers often incorrectly interpret HIV self-test results in Uganda. J. Acquir. Immune Defic. Syndr. 2018;79:e42–e45. doi: 10.1097/QAI.0000000000001765.
    1. Tahlil K.M., Ong J.J., Rosenberg N.E., Tang W., Conserve D.F., Nkengasong S., Muessig K.E., Iwelunmor J., Ezechi O., Gbaja-biamila T., et al. Verification of HIV Self-Testing Use and Results: A Global Systematic Review. AIDS Patient Care STDS. 2020;34:147–156. doi: 10.1089/apc.2019.0283.
    1. Larios O.E., Coleman B.L., Drews S.J., Mazzulli T., Borgundvaag B., Green K., STOP-Flu Study Group. McGeer A.J. Self-collected mid-turbinate swabs for the detection of respiratory viruses in adults with acute respiratory illnesses. PLoS ONE. 2011;6:e21335. doi: 10.1371/journal.pone.0021335.
    1. Cockerill F.R., Wohlgemuth J.G., Radcliff J., Sabol C.E., Kapoor H., Dlott J.S., Marlowe E.M., Clarke N.J. Evolution of Specimen Self-Collection in the COVID-19 Era: Implications for Population Health Management of Infectious Disease. Popul. Health Manag. 2021;24:S26–S34. doi: 10.1089/pop.2020.0296.
    1. Akmatov M.K., Gatzemeier A., Schughart K., Pessler F. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens. PLoS ONE. 2012;7:e48508. doi: 10.1371/journal.pone.0048508.
    1. Dhiman N., Miller R.M., Finley J.L. Effectiveness of patient-collected swabs for influenza testing. Mayo Clin. Proc. 2012;87:548–554. doi: 10.1016/j.mayocp.2012.02.011.
    1. Goyal S., Prasert K., Praphasiri P. The acceptability and validity of self-collected nasal swabs for detection of influenza virus infection among older adults in Thailand. Influenza Other Respir. Viruses. 2017;11:412–417. doi: 10.1111/irv.12471.
    1. Jackson M.L., Nguyen M., Kirlin B., Madziwa L. Self-collected nasal swabs for respiratory virus surveillance. Open Forum Infect. Dis. 2015;2:ofv152. doi: 10.1093/ofid/ofv152.
    1. Prazuck T., Phan Van J., Sinturel F., Levray F., Elie A., Camera D., Pialoux G. Evaluation of the practicability of a finger-stick whole-blood SARS-Cov-2 self-test adapted for the general population. PLoS ONE. 2021;16:e0245848. doi: 10.1371/journal.pone.0245848.
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737.
    1. World Health Organization Interim Guidance. Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immune-Assays. 11 September 2020. [(accessed on 31 May 2021)]. Available online: .
    1. Cerutti F., Burdino E., Milia M.G., Allice T., Gregori G., Bruzzone B., Ghisetti V. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J. Clin. Virol. 2020;132:104654. doi: 10.1016/j.jcv.2020.104654.
    1. Chaimayo C., Kaewnaphan B., Tanlieng N., Athipanyasilp N., Sirijatuphat R., Chayakulkeeree M., Angkasekwinai N., Sutthent R., Puangpunngam N., Tharmviboonsri T., et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020;17:177. doi: 10.1186/s12985-020-01452-5.
    1. Diao B., Wen K., Zhang J., Chen J., Han C., Chen Y., Wang S., Deng G., Zhou H., Wu Y. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin. Microbiol. Infect. 2020;27:289-e1. doi: 10.1016/j.cmi.2020.09.057.
    1. Linares M., Pérez-Tanoira R., Carrero A., Romanyk J., Pérez-García F., Gómez-Herruz P., Arroyo T., Cuadros J. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J. Clin. Virol. 2020;133:104659. doi: 10.1016/j.jcv.2020.104659.
    1. Weitzel T., Legarraga P., Iruretagoyena M., Pizarro G., Vollrath V., Araos R., Munita J.M., Porte L. Comparative evaluation of four rapid SARS-CoV-2 antigen detection tests using universal transport medium. Travel Med. Infect. Dis. 2020;39:101942. doi: 10.1016/j.tmaid.2020.101942.
    1. Courtellemont L., Guinard J., Guillaume C., Giaché S., Rzepecki V., Seve A., Gubavu C., Baud K., Le Helloco C., Cassuto G.N., et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. J. Med. Virol. 2021;93:3152–3157. doi: 10.1002/jmv.26896.
    1. Mboumba Bouassa R.S., Veyer D., Péré H., Bélec L. Analytical performances of the point-of-care SIENNA™ COVID-19 Antigen Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the COVID-19 s wave in France. Int. J. Infect. Dis. 2021;106:8–12. doi: 10.1016/j.ijid.2021.03.051.
    1. Favresse J., Gillot C., Oliveira M., Cadrobbi J., Elsen M., Eucher C., Laffineur K., Rosseels C., Van Eeckhoudt S., Nicolas J.B., et al. Head-to-Head Comparison of Rapid and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. J. Clin. Med. 2021;10:265. doi: 10.3390/jcm10020265.
    1. Schildgen V., Demuth S., Lüsebrink J., Schildgen O. Limits and Opportunities of SARS-CoV-2 Antigen Rapid Tests: An Experienced-Based Perspective. Pathogens. 2021;10:38. doi: 10.3390/pathogens10010038.
    1. Albert E., Torres I., Bueno F., Huntley D., Molla E., Fernández-Fuentes M.Á., Martínez M., Poujois S., Forqué L., Valdivia A., et al. Field evaluation of a rapid antigen test (Panbio COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin. Microbiol. Infect. 2021;27:472-e7. doi: 10.1016/j.cmi.2020.11.004.
    1. Scohy A., Anantharajah A., Bodéus M., Kabamba-Mukadi B., Verroken A., Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020;129:104455. doi: 10.1016/j.jcv.2020.104455.
    1. Yamayoshi S., Sakai-Tagawa Y., Koga M., Akasaka O., Nakachi I., Koh H., Maeda K., Adachi E., Saito M., Nagai H., et al. Comparison of Rapid Antigen Tests for COVID-19. Viruses. 2020;12:1420. doi: 10.3390/v12121420.
    1. Osterman A., Baldauf H.M., Eletreby M., Wettengel J.M., Afridi S.Q., Fuchs T., Holzmann E., Maier A., Döring J., Grzimek-Koschewa N., et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Med. Microbiol. Immunol. 2021;210:65–72. doi: 10.1007/s00430-020-00698-8.
    1. Haute Autorité de Santé, Saint-Denis, France, 8 octobre 2020. Revue Rapide sur les Tests de Détection Antigénique du Virus SARS-CoV-2. [(accessed on 30 May 2021)]. Available online: .
    1. Guglielmi G. Fast coronavirus tests: What they can and can’t do. Nature. 2020;585:496–498. doi: 10.1038/d41586-020-02661-2.
    1. Mattiuzzi C., Henry B., Lippi G. Making sense of rapid antigen testing in SARS-CoV-2 diagnostics. Diagnosis. 2020;8:27–31. doi: 10.1515/dx-2020-0131.
    1. Mina M.J., Parker R., Larremore D.B. Rethinking Covid-19 Test Sensitivity—A Strategy for Containment. N. Engl. J. Med. 2020;383:e120. doi: 10.1056/NEJMp2025631.
    1. Food and Drug Administration In Vitro diagnostics EUAs. Silver Spring, MD: US Department of Health and Human Services, Food and Drug Administration. [(accessed on 30 May 2021)];2020 Available online: .
    1. McCulloch D.J., Kim A.E., Wilcox N.C., Logue J.K., Greninger A.L., Englund J.A., Chu H.Y. Comparison of Unsupervised Home Self-collected Midnasal Swabs With Clinician-Collected Nasopharyngeal Swabs for Detection of SARS-CoV-2 Infection. JAMA Netw. Open. 2020;3:e2016382. doi: 10.1001/jamanetworkopen.2020.16382.
    1. Tu Y.P., Jennings R., Hart B., Cangelosi G.A., Wood R.C., Wehber K., Verma P., Vojta D., Berke E.M. Swabs Collected by Patients or Health Care Workers for SARS-CoV-2 Testing. N. Engl. J. Med. 2020;383:494–496. doi: 10.1056/NEJMc2016321.
    1. Wehrhahn M.C., Robson J., Brown S., Bursle E., Byrne S., New D., Chong S., Newcombe J.P., Siversten T., Hadlow N. Self-collection: An appropriate alternative during the SARS-CoV-2 pandemic. J. Clin. Virol. 2020;128:104417. doi: 10.1016/j.jcv.2020.104417.
    1. Kagan R.M., Rogers A.A., Borillo G.A., Clarke N.J., Marlowe E.M. Performance of Unobserved Self-Collected Nasal Swabs for Detection of SARS-CoV-2 by RT-PCR Utilizing a Remote Specimen Collection Strategy. Open Forum Infect. Dis. 2021;8:ofab039. doi: 10.1093/ofid/ofab039.
    1. Kriegova E., Fillerova R., Raska M., Manakova J., Dihel M., Janca O., Sauer P., Klimkova M., Strakova P., Kvapil P. Excellent option for mass testing during the SARS-CoV-2 pandemic: Painless self-collection and direct RT-qPCR. Virol. J. 2021;18:95. doi: 10.1186/s12985-021-01567-3.
    1. Torretta S., Zuccotti G., Cristofaro V., Ettori J., Solimeno L., Battilocchi L., D’Onghia A., Bonsembiante A., Pignataro L., Marchisio P., et al. Diagnosis of SARS-CoV-2 by RT-PCR Using Different Sample Sources: Review of the Literature. Ear Nose Throat J. 2021;100((Suppl. 2)):131S–138S. doi: 10.1177/0145561320953231.
    1. Tsang N.N.Y., So H.C., Ng K.Y., Cowling B.J., Leung G.M., Ip D.K.M. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: A systematic review and meta-analysis. Lancet Infect. Dis. 2021;21:1233–1245. doi: 10.1016/S1473-3099(21)00146-8.
    1. Esposito S., Molteni C.G., Daleno C., Valzano A., Tagliabue C., Galeone C., Milani G., Fossali E., Marchisio P., Principi N. Collection by trained pediatricians or parents of mid-turbinate nasal flocked swabs for the detection of influenza viruses in childhood. Virol. J. 2010;7:85. doi: 10.1186/1743-422X-7-85.
    1. Seaman C.P., Tran L.T.T., Cowling B.J., Sullivan S.G. Self-collected compared with professional-collected swabbing in the diagnosis of influenza in symptomatic individuals: A meta-analysis and assessment of validity. J. Clin. Virol. 2019;118:28–35. doi: 10.1016/j.jcv.2019.07.010.
    1. Davidson J.L., Wang J., Maruthamuthu M.K., Dextre A., Pascual-Garrigos A., Mohan S., Putikam S.V.S., Osman F.O.I., McChesney D., Seville J., et al. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosens. Bioelectron. X. 2021;9:100076. doi: 10.1016/j.biosx.2021.100076.
    1. Tompson D., Lei Y. Recent progress in RT-LAMP enabled COVID-19 detection. Sens. Actuators Rep. 2020;2:100017. doi: 10.1016/j.snr.2020.100017.
    1. Kost G.J. The Impact of Increasing Disease Prevalence, False Omissions, and Diagnostic Uncertainty on Coronavirus Disease 2019 (COVID-19) Test Performance. Arch. Pathol. Lab. Med. 2021;145:797–813. doi: 10.5858/arpa.2020-0716-SA.

Source: PubMed

3
S'abonner