Effect of Polyphenol-Rich Dark Chocolate on Salivary Cortisol and Mood in Adults

Catherine Tsang, Lindsay Hodgson, Anna Bussu, Grace Farhat, Emad Al-Dujaili, Catherine Tsang, Lindsay Hodgson, Anna Bussu, Grace Farhat, Emad Al-Dujaili

Abstract

The aim of the present study was to investigate whether ingestion of polyphenol-rich dark chocolate improved salivary cortisol levels and subjective mood states in adults recruited from a health and social care setting. Twenty-six participants ingested 25 g/day of a high polyphenol dark chocolate (containing 500 mg of total flavonoids) or a similar amount of a control dark chocolate containing negligible flavonoids for four weeks. Twenty-four-hour salivary glucocorticoid levels (cortisol and cortisone) were measured by an enzyme-linked immunosorbent assay, and subjective mood was assessed using a validated Positive Affect and Negative Affect Schedule. Total daily cortisol, morning cortisol, and the cortisol/cortisone ratio were significantly reduced (p < 0.001) after ingestion of only the high polyphenol dark chocolate. There were no significant differences between groups for overall scores for positive affect and negative affect. No changes were observed after the control dark chocolate, or any other parameter measured. In conclusion, the findings from this small-scale study indicate lowering of salivary cortisol levels following polyphenol-rich dark chocolate in adults recruited from a health and social care setting. Such changes may be attributable to their ability to inhibit 11β-hydroxysteroid dehydrogenase type 1 activity and warrant further investigation.

Keywords: Positive Affect and Negative Affect Schedule; cortisol; dark chocolate; flavonoids; glucocorticoid; mood; polyphenols; stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Salivary glucocorticoid measures at baseline, 2 weeks, and 4 weeks following HPDC and LPDC (mean values ± standard deviation); (A) Daily cortisol (ng/mL), p < 0.001; (B) morning cortisol (ng/mL), p < 0.001; (C) morning cortisone (ng/mL), n.s.; (D) cortisol/cortisone ratio, p < 0.001.
Figure 2
Figure 2
Mean Positive and Negative Affect Schedule (PANAS) scores for positive affect (PA) and negative affect (NA) at baseline, 2 weeks, and 4 weeks following HPDC and LPDC (mean values ± standard deviation); (A) mean PA score, n.s.; (B) mean NA score, n.s. * Significant effect of treatment and time on overall NA (p = 0.02) within the HPDC group after 4 weeks.

References

    1. Basu S., Qayyum H., Mason S. Occupational stress in the ED: A systematic literature review. Emerg. Med. J. 2017;34:441–447. doi: 10.1136/emermed-2016-205827.
    1. Sudhir P.M., Sharma M.P., Mariamma P., Subbakrishna D.K. Quality of life in anxiety disorders: Its relation to work and social functioning and dysfunctional cognitions: An exploratory study from India. Asian J. Psychiatry. 2012;5:309–314. doi: 10.1016/j.ajp.2012.05.006.
    1. Health and Safety Executive, 2017. [(accessed on 1 March 2019)]; Available online: .
    1. Wallang P., Ellis R. Stress, Burnout and resilience and the HCA. Br. J. Healthc. Assist. 2017;11:273–275. doi: 10.12968/bjha.2017.11.6.273.
    1. Elshaer N.S.M., Moustafa M.S.A., Aiad M.W., Ramadan M.I.E. Job Stress and Burnout Syndrome among Critical Care Healthcare Workers. Alexandria J. Med. 2018;54:273–277. doi: 10.1016/j.ajme.2017.06.004.
    1. Fischer S., Macare C., Cleare A.J. Hypothalamic–pituitary–adrenal (HPA) axis functioning as predictor of antidepressant response–meta-analysis. Neurosci. Biobehav. Rev. 2017;83:200–211. doi: 10.1016/j.neubiorev.2017.10.012.
    1. Stephens M.A.C., Mahon P.M., Mc Caul M.C., Wand G.S. Hypothalamic–pituitary–adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones. Psychoneuroendocrinology. 2016;66:47–55. doi: 10.1016/j.psyneuen.2015.12.021.
    1. Girdler S.S., Lindgren M., Porcu P., Rubinow D.R., Johnson J.L., Morrow A.L. A history of depression in women is associated with an altered GABAergic neuroactive steroid profile. Psychoneuroendocrinology. 2012;37:543–553. doi: 10.1016/j.psyneuen.2011.08.004.
    1. Petrowski K., Herold U., Joraschky P., Wittchen H.U., Kirschbaum C. A striking pattern of cortisol non-responsiveness to psychosocial stress in patients with panic disorder with concurrent normal cortisol awakening responses. Psychoneuroendocrinology. 2010;35:414–421. doi: 10.1016/j.psyneuen.2009.08.003.
    1. Stephens M.A., Wand G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res. 2012;34:468–483.
    1. Tsigos C., Chrousos G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002;53:865–871. doi: 10.1016/S0022-3999(02)00429-4.
    1. Saura-Calixto F., Goni I. Definition of the Mediterranean diet based on bioactive compounds. Crit. Rev. Food Sci. Nutr. 2009;49:145–152. doi: 10.1080/10408390701764732.
    1. Miller M.G., Shukitt-Hale B. Berry fruit enhances beneficial signalling in the brain. J. Agric. Food Chem. 2012;60:5709–5715. doi: 10.1021/jf2036033.
    1. Ahmad M.S., Sheeba M., Ali A., Yadav R., Gautam B. Anti-mutagenic Effects of Flavonoids in Human Lymphocytes Culture. Trends Biosci. 2009;2:27–30.
    1. Mao T., Van De Water J., Keen C.L., Schmitz H.H., Gershwin M.E. Cocoa procyanidins and human cytokine transcription and secretion. J. Nutr. 2000;130:2093S–2099S. doi: 10.1093/jn/130.8.2093S.
    1. Vita J.A. Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am. J. Clin. Nutr. 2005;81:292S–297S. doi: 10.1093/ajcn/81.1.292S.
    1. An L., An Y.Z., Zhang N.J., Yu X., Liu M., Zhao N., Yuan L. The total flavonoids extracted from Xiaobuxin Tang up-regulate the decreased hippocampal neurogenesis and neurotrophic molecules expression in chronically stressed rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2008;32:1484–1490. doi: 10.1016/j.pnpbp.2008.05.005.
    1. An L., Zhang N.J., Liu M., Yu N.J., Chen H.X., Zhao N., Yuan L. Total flavonoids extracted from Xiaobuxin-Tang on the hyperactivity of hypothalamic–pituitary–adrenal axis in chronically stressed rats. Evid.-Based Complement. Altern. Med. 2011:1–7. doi: 10.1093/ecam/nep218.
    1. Smith D.F. Benefits of flavanol-rich cocoa-derived products for mental well-being: A review. J. Funct. Foods. 2013;5:10–15. doi: 10.1016/j.jff.2012.09.002.
    1. Ratnasooriya W.D., Fernando T.S.P., Ranatunga R.A.A.R. Anxiolytic activity of hot water brew of Sri Lankan black tea (Camellia sinensis L.) in rats. Aust. J. Med. Herb. 2007;19:178–187.
    1. Young E.A., Abelson J.L., Cameron O.G. Effect of comorbid anxiety disorders on the hypothalamic–pituitary–adrenal axis response to a social stressor in major depression. Biol. Psychiatry. 2004;56:113–120. doi: 10.1016/j.biopsych.2004.03.017.
    1. Sathyapalan T., Beckett S., Rigby A.S., Mellor D.D., Atkin S.L. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr. J. 2010;9:55. doi: 10.1186/1475-2891-9-55.
    1. Khalid S., Barfoot K., May G., Lamport D., Reynolds S., Williams C. Effects of Acute Blueberry Flavonoids on Mood in Children and Young Adults. Nutrients. 2017;9:158. doi: 10.3390/nu9020158.
    1. Scholey A.B., French S.J., Morris P.J., Kennedy D.O., Milne A.L., Haskell C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2010;24:1505–1514. doi: 10.1177/0269881109106923.
    1. Pase M.P., Scholey A.B., Pipingas A., Kras M., Nolidin K., Gibbs A., Wesnes K., Stough C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013;27:451–458. doi: 10.1177/0269881112473791.
    1. Grassi D., Lippi C., Necozione S., Desideri G., Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am. J. Clin. Nutr. 2005;81:611–614. doi: 10.1093/ajcn/81.3.611.
    1. Watson D., Clark L.A., Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Person. Soc. Psychol. 1988;54:1063. doi: 10.1037/0022-3514.54.6.1063.
    1. Baghdadi H., Al-Dujaili E., Almoosawi S., Howie F., Mason I. Application of a highly specific and sensitive ELISA for the estimation of cortisone in biological fluids. Endo Abstr. 2010;16:152.
    1. Palermo M., Shackleton C.H., Mantero F., Stewart P.M. Urinary free cortisone and the assessment of 11β-hydroxysteroid dehydrogenase activity in man. Clin. Endocrinol. 1996;45:605–611. doi: 10.1046/j.1365-2265.1996.00853.x.
    1. Newton R. Molecular mechanisms of glucocorticoid action: What is important? Thorax. 2000;55:603–613. doi: 10.1136/thorax.55.7.603.
    1. Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–2170. doi: 10.1126/science.1066285.
    1. Keller J., Gomez R., Williams G., Lembke A., Lazzeroni L., Murphy Jr G.M., Schatzberg A.F. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry. 2017;22:527. doi: 10.1038/mp.2016.120.
    1. Almoosawi S., Tsang C., Ostertag L.M., Fyfe L., Al-Dujaili E.A. Differential effect of polyphenol-rich dark chocolate on biomarkers of glucose metabolism and cardiovascular risk factors in healthy, overweight and obese subjects: a randomized clinical trial. Food Funct. 2012;3:1035–1043. doi: 10.1039/c2fo30060e.
    1. Lee Y.S., Lorenzo B.J., Koufis T., Reidenberg M.M. Grapefruit juice and its flavonoids inhibit 11β-hydroxysteroid dehydrogenase. Clin. Pharmacol. Ther. 1996;59:62–71. doi: 10.1016/S0009-9236(96)90025-9.
    1. Zhu J.T., Choi R.C., Chu G.K., Cheung A.W., Gao Q.T., Li J., Jiang Z.Y., Dong T.T., Tsim K.W. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. J. Agric. Food Chem. 2007;55:2438–2445. doi: 10.1021/jf063299z.
    1. Chapman K., Holmes M., Seckl J. 11β-hydroxysteroid dehydrogenases: Intracellular gatekeepers of tissue glucocorticoid action. Physiol. Rev. 2013;93:1139–1206. doi: 10.1152/physrev.00020.2012.

Source: PubMed

3
S'abonner