Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins?

Martin Schubert, Stefan Kluge, Lisa Schmölz, Maria Wallert, Francesco Galli, Marc Birringer, Stefan Lorkowski, Martin Schubert, Stefan Kluge, Lisa Schmölz, Maria Wallert, Francesco Galli, Marc Birringer, Stefan Lorkowski

Abstract

Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.

Keywords: 13′-carboxychromanol (13′-COOH); 13′-hydroxychromanol (13′-OH); biological activity; long-chain metabolites of vitamin E; vitamin E; vitamin E metabolism.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Metabolism of vitamin E. The metabolism of vitamin E is initiated by a terminal ω-hydroxylation of the side-chain via CYP4F2 and CYP3A4. The resulting hydroxychromanol is further modified by ω-oxidation, resulting in the formation of carboxychromanol, possibly by alcohol and aldehyde dehydrogenases. As a consequence, the metabolite can be subjected to β-oxidation. Five cycles of β-oxidation lead to the formation of the short-chain metabolite CEHC. However, this review focuses on the LCMs 13′-OH and 13′-COOH as these molecules have been synthesized in sufficient amounts for in vitro and in vivo investigations. The following abbreviations are used: ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; CDMDHC, carboxydimethyldecylhydroxychromanol; CDMOHC, carboxymethyloctylhydroxychromanol; CDMHHC, carboxymethylhexylhydroxychromanol; CMBHC, carboxymethylbutylhydroxychromanol; CEHC, carboxyethylhydroxychromanol.
Figure 2
Figure 2
Reported biological functions of the LCMs of vitamin E.

References

    1. Horn M., Gunn P., van Emon M., Lemenager R., Burgess J., Pyatt N.A., Lake S.L. Effects of natural (RRR alpha-tocopherol acetate) or synthetic (all-rac-alpha-tocopherol acetate) vitamin E supplementation on reproductive efficiency in beef cows. J. Anim. Sci. 2010;88:3121–3127. doi: 10.2527/jas.2009-1807.
    1. Evans H.M., Bishop K.S. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56:650–651. doi: 10.1126/science.56.1458.650.
    1. Kluge S., Schubert M., Schmölz L., Birringer M., Wallert M., Lorkowski S. Garcinoic Acid: A Promising Bioactive Natural Product for Better Understanding the Physiological Functions of Tocopherol Metabolites. Stud. Nat. Prod. Chem. 2016;51:435–481. doi: 10.1016/B978-0-444-63932-5.00009-7.
    1. Sano M., Ernesto C., Thomas R.G., Klauber M.R., Schafer K., Grundman M., Woodbury P., Growdon J., Cotman C.W., Pfeiffer E., et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 1997;336:1216–1222. doi: 10.1056/NEJM199704243361704.
    1. Dysken M.W., Guarino P.D., Vertrees J.E., Asthana S., Sano M., Llorente M., Pallaki M., Love S., Schellenberg G.D., McCarten J.R., et al. Vitamin E and memantine in Alzheimer’s disease: Clinical trial methods and baseline data. Alzheimer Dement. J. Alzheimer Assoc. 2014;10:36–44. doi: 10.1016/j.jalz.2013.01.014.
    1. Jishage K., Arita M., Igarashi K., Iwata T., Watanabe M., Ogawa M., Ueda O., Kamada N., Inoue K., Arai H., et al. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J. Biol. Chem. 2001;276:1669–1672. doi: 10.1074/jbc.C000676200.
    1. Shichiri M., Yoshida Y., Ishida N., Hagihara Y., Iwahashi H., Tamai H., Niki E. α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic. Biol. Med. 2011;50:1801–1811. doi: 10.1016/j.freeradbiomed.2011.03.023.
    1. Czeizel A.E., Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992;327:1832–1835. doi: 10.1056/NEJM199212243272602.
    1. Chandler A.L., Hobbs C.A., Mosley B.S., Berry R.J., Canfield M.A., Qi Y.P., Siega-Riz A.M., Shaw G.M. Neural tube defects and maternal intake of micronutrients related to one-carbon metabolism or antioxidant activity. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:864–874. doi: 10.1002/bdra.23068.
    1. Brigelius-Flohé R. Vitamin E: The shrew waiting to be tamed. Free Radic. Biol. Med. 2009;46:543–554. doi: 10.1016/j.freeradbiomed.2008.12.007.
    1. Wallert M., Schmölz L., Galli F., Birringer M., Lorkowski S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol. 2014;2:495–503. doi: 10.1016/j.redox.2014.02.002.
    1. Jiang Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014;72:76–90. doi: 10.1016/j.freeradbiomed.2014.03.035.
    1. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol. Asp. Med. 2007;28:423–436. doi: 10.1016/j.mam.2007.01.002.
    1. Bjørneboe A., Bjørneboe G.E., Drevon C.A. Absorption, transport and distribution of vitamin E. J. Nutr. 1990;120:233–242. doi: 10.1093/jn/120.3.233.
    1. Borel P., Pasquier B., Armand M., Tyssandier V., Grolier P., Alexandre-Gouabau M.C., Andre M., Senft M., Peyrot J., Jaussan V., et al. Processing of vitamin A and E in the human gastrointestinal tract. Am. J. Physiol.-Gastrointest. Liver Physiol. 2001;280:G95–G103. doi: 10.1152/ajpgi.2001.280.1.G95.
    1. Reboul E. Intestinal absorption of vitamin D: From the meal to the enterocyte. Food Funct. 2015;6:356–362. doi: 10.1039/C4FO00579A.
    1. Bieri J.G., Wu A.L., Tolliver T.J. Reduced intestinal absorption of vitamin E by low dietary levels of retinoic acid in rats. J. Nutr. 1981;111:458–467.
    1. Richelle M., Enslen M., Hager C., Groux M., Tavazzi I., Godin J.-P., Berger A., Métairon S., Quaile S., Piguet-Welsch C., et al. Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of beta-carotene and alpha-tocopherol in normocholesterolemic humans. Am. J. Clin. Nutr. 2004;80:171–177.
    1. Doi K., Matsuura M., Kawara A., Tanaka T., Baba S. Influence of dietary fiber (konjac mannan) on absorption of vitamin B12 and vitamin E. Tohoku J. Exp. Med. 1983;141:677–681. doi: 10.1620/tjem.141.Suppl_677.
    1. Burton G.W., Ingold K.U., Foster D.O., Cheng S.C., Webb A., Hughes L., Lusztyk E. Comparison of free alpha-tocopherol and alpha-tocopheryl acetate as sources of vitamin E in rats and humans. Lipids. 1988;23:834–840. doi: 10.1007/BF02536201.
    1. D’Ambrosio D.N., Clugston R.D., Blaner W.S. Vitamin A metabolism: An update. Nutrients. 2011;3:63–103. doi: 10.3390/nu3010063.
    1. Weng W., Li L., van Bennekum A.M., Potter S.H., Harrison E.H., Blaner W.S., Breslow J.L., Fisher E.A. Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry. 1999;38:4143–4149. doi: 10.1021/bi981679a.
    1. Maislos M., Shany S. Bile salt deficiency and the absorption of vitamin D metabolites. In vivo study in the rat. Isr. J. Med. Sci. 1987;23:1114–1117.
    1. Reboul E., Klein A., Bietrix F., Gleize B., Malezet-Desmoulins C., Schneider M., Margotat A., Lagrost L., Collet X., Borel P. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem. 2006;281:4739–4745. doi: 10.1074/jbc.M509042200.
    1. Hacquebard M., Carpentier Y.A. Vitamin E: Absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care. 2005;8:133–138. doi: 10.1097/00075197-200503000-00005.
    1. Yamanashi Y., Takada T., Kurauchi R., Tanaka Y., Komine T., Suzuki H. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K. J. Atheroscler. Thromb. 2017;24:347–359. doi: 10.5551/jat.RV16007.
    1. Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 2013;5:3563–3581. doi: 10.3390/nu5093563.
    1. Traber M.G., Burton G.W., Ingold K.U., Kayden H.J. RRR- and SRR-alpha-tocopherols are secreted without discrimination in human chylomicrons, but RRR-alpha-tocopherol is preferentially secreted in very low density lipoproteins. J. Lipid Res. 1990;31:675–685.
    1. Traber M.G., Burton G.W., Hughes L., Ingold K.U., Hidaka H., Malloy M., Kane J., Hyams J., Kayden H.J. Discrimination between forms of vitamin E by humans with and without genetic abnormalities of lipoprotein metabolism. J. Lipid Res. 1992;33:1171–1182.
    1. Shearer M.J., Newman P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 2008 doi: 10.1160/TH08-03-0147.
    1. Cooper A.D. Hepatic uptake of chylomicron remnants. J. Lipid Res. 1997;38:2173–2192.
    1. Kiyose C., Muramatsu R., Kameyama Y., Ueda T., Igarashi O. Biodiscrimination of alpha-tocopherol stereoisomers in humans after oral administration. Am. J. Clin. Nutr. 1997;65:785–789. doi: 10.1093/ajcn/65.3.785.
    1. Weiser H., Riss G., Kormann A.W. Selective biodiscrimination of alpha-tocopherol stereoisomers. Similar enrichment of all 2R forms in rat tissues after oral all-rac-alpha-tocopheryl acetate. Ann. N. Y. Acad. Sci. 1992;669:393–395. doi: 10.1111/j.1749-6632.1992.tb17133.x.
    1. Traber M.G., Kayden H.J. Alpha-tocopherol as compared with gamma-tocopherol is preferentially secreted in human lipoproteins. Ann. N. Y. Acad. Sci. 1989;570:95–108. doi: 10.1111/j.1749-6632.1989.tb14911.x.
    1. Arita M., Nomura K., Arai H., Inoue K. alpha-tocopherol transfer protein stimulates the secretion of alpha-tocopherol from a cultured liver cell line through a brefeldin A-insensitive pathway. Proc. Natl. Acad. Sci. USA. 1997;94:12437–12441. doi: 10.1073/pnas.94.23.12437.
    1. Oram J.F., Vaughan A.M., Stocker R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J. Biol. Chem. 2001;276:39898–39902. doi: 10.1074/jbc.M106984200.
    1. Mustacich D.J., Shields J., Horton R.A., Brown M.K., Reed D.J. Biliary secretion of alpha-tocopherol and the role of the mdr2 P-glycoprotein in rats and mice. Arch. Biochem. Biophys. 1998;350:183–192. doi: 10.1006/abbi.1997.0529.
    1. Lemaire-Ewing S., Desrumaux C., Néel D., Lagrost L. Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol. Nutr. Food Res. 2010;54:631–640. doi: 10.1002/mnfr.200900445.
    1. Schmölz L., Birringer M., Lorkowski S., Wallert M. Complexity of vitamin E metabolism. World J. Biol. Chem. 2016;7:14–43. doi: 10.4331/wjbc.v7.i1.14.
    1. Abe C., Uchida T., Ohta M., Ichikawa T., Yamashita K., Ikeda S. Cytochrome P450-dependent metabolism of vitamin E isoforms is a critical determinant of their tissue concentrations in rats. Lipids. 2007;42:637–645. doi: 10.1007/s11745-007-3064-2.
    1. Bardowell S.A., Ding X., Parker R.S. Disruption of P450-mediated vitamin E hydroxylase activities alters vitamin E status in tocopherol supplemented mice and reveals extra-hepatic vitamin E metabolism. J. Lipid Res. 2012;53:2667–2676. doi: 10.1194/jlr.M030734.
    1. Grebenstein N., Schumacher M., Graeve L., Frank J. α-Tocopherol transfer protein is not required for the discrimination against γ-tocopherol in vivo but protects it from side-chain degradation in vitro. Mol. Nutr. Food Res. 2014;58:1052–1060. doi: 10.1002/mnfr.201300756.
    1. Chiku S., Hamamura K., Nakamura T. Novel urinary metabolite of d-delta-tocopherol in rats. J. Lipid Res. 1984;25:40–48.
    1. Swanson J.E., Ben R.N., Burton G.W., Parker R.S. Urinary excretion of 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman is a major route of elimination of gamma-tocopherol in humans. J. Lipid Res. 1999;40:665–671.
    1. Sontag T.J., Parker R.S. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J. Biol. Chem. 2002;277:25290–25296. doi: 10.1074/jbc.M201466200.
    1. Birringer M., Pfluger P., Kluth D., Landes N., Brigelius-Flohé R. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J. Nutr. 2002;132:3113–3118.
    1. Parker R.S., Sontag T.J., Swanson J.E. Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. Biochem. Biophys. Res. Commun. 2000;277:531–534. doi: 10.1006/bbrc.2000.3706.
    1. Johnson C.H., Slanař O., Krausz K.W., Kang D.W., Patterson A.D., Kim J.-H., Luecke H., Gonzalez F.J., Idle J.R. Novel metabolites and roles for α-tocopherol in humans and mice discovered by mass spectrometry-based metabolomics. Am. J. Clin. Nutr. 2012;96:818–830. doi: 10.3945/ajcn.112.042929.
    1. Zhao Y., Lee M.-J., Cheung C., Ju J.-H., Chen Y.-K., Liu B., Hu L.-Q., Yang C.S. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J. Agric. Food Chem. 2010;58:4844–4852. doi: 10.1021/jf904464u.
    1. Goodman D.S. Overview of current knowledge of metabolism of vitamin A and carotenoids. J. Natl. Cancer Inst. 1984;73:1375–1379.
    1. Zhong M., Kawaguchi R., Kassai M., Sun H. Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients. 2012;4:2069–2096. doi: 10.3390/nu4122069.
    1. Petkovich M., Brand N.J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987;330:444–450. doi: 10.1038/330444a0.
    1. Lampen A., Meyer S., Arnhold T., Nau H. Metabolism of vitamin A and its active metabolite all-trans-retinoic acid in small intestinal enterocytes. J. Pharmacol. Exp. Ther. 2000;295:979–985.
    1. Bikle D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014;21:319–329. doi: 10.1016/j.chembiol.2013.12.016.
    1. Urrutia-Pereira M., Solé D. Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood. Rev. Paul. Pediatr. 2015;33:104–113. doi: 10.1016/S2359-3482(15)30036-1.
    1. Landes N., Birringer M., Brigelius-Flohé R. Homologous metabolic and gene activating routes for vitamins E and K. Mol. Asp. Med. 2003;24:337–344. doi: 10.1016/S0098-2997(03)00029-3.
    1. Hodges S.J., Pitsillides A.A., Ytrebø L.M., Soper R. Anti-inflammatory actions of vitamin K. In: Gordeladze J.O., editor. Vitamin K2—Vital for Health and Wellbeing. InTech; Rijeka, Croatia: 2017.
    1. Traber M.G. Vitamin E and K interactions—A 50-year-old problem. Nutr. Rev. 2008;66:624–629. doi: 10.1111/j.1753-4887.2008.00123.x.
    1. Yamamoto R., Komai M., Kojima K., Furukawa Y., Kimura S. Menaquinone-4 accumulation in various tissues after an oral administration of phylloquinone in Wistar rats. J. Nutr. Sci. Vitaminol. 1997;43:133–143. doi: 10.3177/jnsv.43.133.
    1. Okano T., Shimomura Y., Yamane M., Suhara Y., Kamao M., Sugiura M., Nakagawa K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008;283:11270–11279. doi: 10.1074/jbc.M702971200.
    1. Brigelius-Flohé R., Kelly F.J., Salonen J.T., Neuzil J., Zingg J.-M., Azzi A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002;76:703–716.
    1. Azzi A., Ricciarelli R., Zingg J.-M. Non-antioxidant molecular functions of α-tocopherol (vitamin E) FEBS Lett. 2002;519:8–10. doi: 10.1016/S0014-5793(02)02706-0.
    1. Wallert M., Mosig S., Rennert K., Funke H., Ristow M., Pellegrino R.M., Cruciani G., Galli F., Lorkowski S., Birringer M. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro. Free Radic. Biol. Med. 2014;68:43–51. doi: 10.1016/j.freeradbiomed.2013.11.009.
    1. Schmölz L., Wallert M., Rozzino N., Cignarella A., Galli F., Glei M., Werz O., Koeberle A., Birringer M., Lorkowski S. Structure-Function Relationship Studies in vitro Reveal Distinct and Specific Effects of Long-Chain Metabolites of Vitamin E. Mol. Nutr. Food Res. 2017 doi: 10.1002/mnfr.201700562.
    1. Torquato P., Ripa O., Giusepponi D., Galarini R., Bartolini D., Wallert M., Pellegrino R., Cruciani G., Lorkowski S., Birringer M., et al. Analytical strategies to assess the functional metabolome of vitamin E. J. Pharm. Biomed. Anal. 2016;124:399–412. doi: 10.1016/j.jpba.2016.01.056.
    1. Giusepponi D., Torquato P., Bartolini D., Piroddi M., Birringer M., Lorkowski S., Libetta C., Cruciani G., Moretti S., Saluti G., et al. Determination of tocopherols and their metabolites by liquid-chromatography coupled with tandem mass spectrometry in human plasma and serum. Talanta. 2017;170:552–561. doi: 10.1016/j.talanta.2017.04.030.
    1. Munteanu A., Zingg J.-M., Azzi A. Anti-atherosclerotic effects of vitamin E—Myth or reality? J. Cell. Mol. Med. 2004;8:59–76. doi: 10.1111/j.1582-4934.2004.tb00260.x.
    1. Traber M.G., Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007;43:4–15. doi: 10.1016/j.freeradbiomed.2007.03.024.
    1. Brigelius-Flohé R., Davies K.J.A. Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a ‘junk’ food? Comments on the two accompanying papers: “Molecular mechanism of alpha-tocopherol action” by A. Azzi and “Vitamin E, antioxidant and nothing more” by M. Traber and J. Atkinson. Free Radic. Biol. Med. 2007;43:2–3. doi: 10.1016/j.freeradbiomed.2007.05.016.
    1. Jiang Q., Yin X., Lill M.A., Danielson M.L., Freiser H., Huang J. Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc. Natl. Acad. Sci. USA. 2008;105:20464–20469. doi: 10.1073/pnas.0810962106.
    1. Ciffolilli S., Wallert M., Bartolini D., Krauth V., Werz O., Piroddi M., Sebastiani B., Torquato P., Lorkowski S., Birringer M., et al. Human serum determination and in vitro anti-inflammatory activity of the vitamin E metabolite α-(13′-hydroxy)-6-hydroxychroman. Free Radic. Biol. Med. 2015;89:952–962. doi: 10.1016/j.freeradbiomed.2015.08.019.
    1. Jang Y., Park N.-Y., Rostgaard-Hansen A.L., Huang J., Jiang Q. Vitamin E metabolite 13′-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice. Free Radic. Biol. Med. 2016;95:190–199. doi: 10.1016/j.freeradbiomed.2016.03.018.
    1. Jiang Z., Yin X., Jiang Q. Natural forms of vitamin E and 13′-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. J. Immunol. 2011;186:1173–1179. doi: 10.4049/jimmunol.1002342.
    1. Wallert M., Schmolz L., Koeberle A., Krauth V., Glei M., Galli F., Werz O., Birringer M., Lorkowski S. Alpha-Tocopherol long-chain metabolite alpha-13′-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages. Mol. Nutr. Food Res. 2015;59:1524–1534. doi: 10.1002/mnfr.201400737.
    1. Schmölz L., Wallert M., Lorkowski S. Optimized incubation regime for nitric oxide measurements in murine macrophages using the Griess assay. J. Immunol. Methods. 2017 doi: 10.1016/j.jim.2017.06.012.
    1. Mazzini F., Betti M., Netscher T., Galli F., Salvadori P. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds. Chirality. 2009;21:519–524. doi: 10.1002/chir.20630.
    1. Birringer M., Lington D., Vertuani S., Manfredini S., Scharlau D., Glei M., Ristow M. Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress. Free Radic. Biol. Med. 2010;49:1315–1322. doi: 10.1016/j.freeradbiomed.2010.07.024.
    1. Podszun M.C., Jakobi M., Birringer M., Weiss J., Frank J. The long chain α-tocopherol metabolite α-13′-COOH and γ-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201600605.
    1. Torquato P., Bartolini D., Giusepponi D., Saluti G., Russo A., Barola C., Birringer M., Galarini R., Galli F. a-13′-OH is the main product of a-tocopherol metabolism and influences CYP4F2 and PPARg: Gene expression in HepG2 human hepatocarcinoma cells. Free Radic. Biol. Med. 2016;96:S19–S20. doi: 10.1016/j.freeradbiomed.2016.04.159.
    1. Reddi K., Henderson B., Meghji S., Wilson M., Poole S., Hopper C., Harris M., Hodges S.J. Interleukin 6 production by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin K) compounds. Cytokine. 1995;7:287–290. doi: 10.1006/cyto.1995.0034.
    1. Soper R.J., Oguz C., Emery R., Pitsillides A.A., Hodges S.J. Vitamin K catabolite inhibition of ovariectomy-induced bone loss: Structure-activity relationship considerations. Mol. Nutr. Food Res. 2014;58:1658–1666. doi: 10.1002/mnfr.201400063.
    1. Fujii S., Shimizu A., Takeda N., Oguchi K., Katsurai T., Shirakawa H., Komai M., Kagechika H. Systematic synthesis and anti-inflammatory activity of ω-carboxylated menaquinone derivatives—Investigations on identified and putative vitamin K2 metabolites. Bioorg. Med. Chem. 2015;23:2344–2352. doi: 10.1016/j.bmc.2015.03.070.
    1. Harrington D.J., Soper R., Edwards C., Savidge G.F., Hodges S.J., Shearer M.J. Determination of the urinary aglycone metabolites of vitamin K by HPLC with redox-mode electrochemical detection. J. Lipid Res. 2005;46:1053–1060. doi: 10.1194/jlr.D400033-JLR200.
    1. Conte C., Floridi A., Aisa C., Piroddi M., Floridi A., Galli F. Gamma-tocotrienol metabolism and antiproliferative effect in prostate cancer cells. Ann. N. Y. Acad. Sci. 2004;1031:391–394. doi: 10.1196/annals.1331.054.
    1. Galli F., Stabile A.M., Betti M., Conte C., Pistilli A., Rende M., Floridi A., Azzi A. The effect of alpha- and gamma-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation. Arch. Biochem. Biophys. 2004;423:97–102. doi: 10.1016/j.abb.2003.11.014.
    1. Kennel K.A., Drake M.T. Vitamin D in the cancer patient. Curr. Opin. Support. Palliat. Care. 2013;7:272–277. doi: 10.1097/SPC.0b013e3283640f74.
    1. Vanoirbeek E., Krishnan A., Eelen G., Verlinden L., Bouillon R., Feldman D., Verstuyf A. The anti-cancer and anti-inflammatory actions of 1,25(OH)2D3. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:593–604. doi: 10.1016/j.beem.2011.05.001.
    1. Tang X.-H., Gudas L.J. Retinoids, retinoic acid receptors, and cancer. Ann. Rev. Pathol. 2011;6:345–364. doi: 10.1146/annurev-pathol-011110-130303.
    1. Qin X.-Y., Fujii S., Shimizu A., Kagechika H., Kojima S. Carboxylic Derivatives of Vitamin K2 Inhibit Hepatocellular Carcinoma Cell Growth through Caspase/Transglutaminase-Related Signaling Pathways. J. Nutr. Sci. Vitaminol. 2015;61:285–290. doi: 10.3177/jnsv.61.285.
    1. De Oliveira M.R. Vitamin A and Retinoids as Mitochondrial Toxicants. Oxid. Med. Cell. Longev. 2015;2015:140267. doi: 10.1155/2015/140267.
    1. Uray I.P., Dmitrovsky E., Brown P.H. Retinoids and rexinoids in cancer prevention: From laboratory to clinic. Semin. Oncol. 2016;43:49–64. doi: 10.1053/j.seminoncol.2015.09.002.
    1. Langmann T., Liebisch G., Moehle C., Schifferer R., Dayoub R., Heiduczek S., Grandl M., Dada A., Schmitz G. Gene expression profiling identifies retinoids as potent inducers of macrophage lipid efflux. Biochim. Biophys. Acta. 2005;1740:155–161. doi: 10.1016/j.bbadis.2004.11.016.
    1. Galli F., Azzi A., Birringer M., Cook-Mills J.M., Eggersdorfer M., Frank J., Cruciani G., Lorkowski S., Özer N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017;102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017.
    1. Argmann C.A., Sawyez C.G., McNeil C.J., Hegele R.A., Huff M.W. Activation of peroxisome proliferator-activated receptor gamma and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoproteins. Arterioscler. Thromb. Vasc. Biol. 2003;23:475–482. doi: 10.1161/01.ATV.0000058860.62870.6E.
    1. Han S., Sidell N. Peroxisome-proliferator-activated-receptor gamma (PPARgamma) independent induction of CD36 in THP-1 monocytes by retinoic acid. Immunology. 2002;106:53–59. doi: 10.1046/j.1365-2567.2002.01404.x.
    1. Wuttge D.M. Induction of CD36 by all-trans retinoic acid: Retinoic acid receptor signaling in the pathogenesis of atherosclerosis. FASEB J. 2001 doi: 10.1096/fj.00-0488fje.
    1. Barber N., Belov L., Christopherson R.I. All-trans retinoic acid induces different immunophenotypic changes on human HL60 and NB4 myeloid leukaemias. Leuk. Res. 2008;32:315–322. doi: 10.1016/j.leukres.2007.04.013.
    1. Endemann G., Stanton L.W., Madden K.S., Bryant C.M., White R.T., Protter A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993;268:11811–11816.
    1. Silverstein R.L., Li W., Park Y.M., Rahaman S.O. Mechanisms of cell signaling by the scavenger receptor CD36: Implications in atherosclerosis and thrombosis. Trans. Am. Clin. Climatol. Assoc. 2010;121:206–220.
    1. Tontonoz P., Nagy L., Alvarez J.G., Thomazy V.A., Evans R.M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–252. doi: 10.1016/S0092-8674(00)81575-5.
    1. Schrijvers D.M., De Meyer G.R.Y., Herman A.G., Martinet W. Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 2007;73:470–480. doi: 10.1016/j.cardiores.2006.09.005.
    1. Oh J., Weng S., Felton S.K., Bhandare S., Riek A., Butler B., Proctor B.M., Petty M., Chen Z., Schechtman K.B., et al. 1,25(OH)2 vitamin D inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation. 2009;120:687–698. doi: 10.1161/CIRCULATIONAHA.109.856070.
    1. Riek A.E., Oh J., Bernal-Mizrachi C. Vitamin D regulates macrophage cholesterol metabolism in diabetes. J. Steroid Biochem. Mol. Biol. 2010;121:430–433. doi: 10.1016/j.jsbmb.2010.03.018.
    1. Dewanjee S., Dua T.K., Bhattacharjee N., Das A., Gangopadhyay M., Khanra R., Joardar S., Riaz M., Feo V.D., Zia-Ul-Haq M. Natural products as alternative choices for P-Glycoprotein (P-gp) inhibition. Molecules. 2017;22:871. doi: 10.3390/molecules22060871.
    1. Silva R., Vilas-Boas V., Carmo H., Dinis-Oliveira R.J., Carvalho F., de Lourdes Bastos M., Remião F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015;149:1–123. doi: 10.1016/j.pharmthera.2014.11.013.
    1. Henry H.L. Regulation of vitamin D metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:531–541. doi: 10.1016/j.beem.2011.05.003.
    1. Mustacich D.J., Leonard S.W., Patel N.K., Traber M.G. Alpha-tocopherol beta-oxidation localized to rat liver mitochondria. Free Radic. Biol. Med. 2010;48:73–81. doi: 10.1016/j.freeradbiomed.2009.10.024.
    1. Benbrook D., Lernhardt E., Pfahl M. A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature. 1988;333:669–672. doi: 10.1038/333669a0.
    1. Brand N., Petkovich M., Krust A., Chambon P., de Thé H., Marchio A., Tiollais P., Dejean A. Identification of a second human retinoic acid receptor. Nature. 1988;332:850–853. doi: 10.1038/332850a0.
    1. Giguere V., Ong E.S., Segui P., Evans R.M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987;330:624–629. doi: 10.1038/330624a0.
    1. Zelent A., Krust A., Petkovich M., Kastner P., Chambon P. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature. 1989;339:714–717. doi: 10.1038/339714a0.
    1. Brumbaugh P.F., Hughes M.R., Haussler M.R. Cytoplasmic and nuclear binding components for 1alpha25-dihydroxyvitamin D3 in chick parathyroid glands. Proc. Natl. Acad. Sci. USA. 1975;72:4871–4875. doi: 10.1073/pnas.72.12.4871.
    1. Tsai H.C., Norman A.W. Studies on calciferol metabolism. 8. Evidence for a cytoplasmic receptor for 1,25-dihydroxy-vitamin D3 in the intestinal mucosa. J. Biol. Chem. 1973;248:5967–5975.
    1. Baker A.R., McDonnell D.P., Hughes M., Crisp T.M., Mangelsdorf D.J., Haussler M.R., Pike J.W., Shine J., O’Malley B.W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl. Acad. Sci. USA. 1988;85:3294–3298. doi: 10.1073/pnas.85.10.3294.
    1. Carlberg C., Campbell M.J. Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor. Steroids. 2013;78:127–136. doi: 10.1016/j.steroids.2012.10.019.
    1. Gross C., Krishnan A.V., Malloy P.J., Eccleshall T.R., Zhao X.Y., Feldman D. The vitamin D receptor gene start codon polymorphism: A functional analysis of FokI variants. J. Bone Miner. Res. 1998;13:1691–1699. doi: 10.1359/jbmr.1998.13.11.1691.
    1. Allenby G., Janocha R., Kazmer S., Speck J., Grippo J.F., Levin A.A. Binding of 9-cis-retinoic acid and all-trans-retinoic acid to retinoic acid receptors alpha, beta, and gamma. Retinoic acid receptor gamma binds all-trans-retinoic acid preferentially over 9-cis-retinoic acid. J. Biol. Chem. 1994;269:16689–16695.
    1. Heyman R.A., Mangelsdorf D.J., Dyck J.A., Stein R.B., Eichele G., Evans R.M., Thaller C. 9-cis-retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992;68:397–406. doi: 10.1016/0092-8674(92)90479-V.
    1. Wolf G. Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor? Nutr. Rev. 2006;64:532–538. doi: 10.1111/j.1753-4887.2006.tb00186.x.
    1. Landes N., Pfluger P., Kluth D., Birringer M., Rühl R., Böl G.-F., Glatt H., Brigelius-Flohé R. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 2003;65:269–273. doi: 10.1016/S0006-2952(02)01520-4.
    1. Kliewer S.A., Goodwin B., Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038.
    1. Tabb M.M., Sun A., Zhou C., Grün F., Errandi J., Romero K., Pham H., Inoue S., Mallick S., Lin M., et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200.
    1. Ichikawa T., Horie-Inoue K., Ikeda K., Blumberg B., Inoue S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J. Biol. Chem. 2006;281:16927–16934. doi: 10.1074/jbc.M600896200.
    1. Suhara Y., Watanabe M., Nakagawa K., Wada A., Ito Y., Takeda K., Takahashi K., Okano T. Synthesis of novel vitamin K2 analogues with modification at the ω-terminal position and their biological evaluation as potent steroid and xenobiotic receptor (SXR) agonists. J. Med. Chem. 2011;54:4269–4273. doi: 10.1021/jm200025f.

Source: PubMed

3
S'abonner