Garcinoic Acid Is a Natural and Selective Agonist of Pregnane X Receptor

Desirée Bartolini, Francesca De Franco, Pierangelo Torquato, Rita Marinelli, Bruno Cerra, Riccardo Ronchetti, Arne Schon, Francesca Fallarino, Antonella De Luca, Guido Bellezza, Ivana Ferri, Angelo Sidoni, William G Walton, Samuel J Pellock, Matthew R Redinbo, Sridhar Mani, Roberto Pellicciari, Antimo Gioiello, Francesco Galli, Desirée Bartolini, Francesca De Franco, Pierangelo Torquato, Rita Marinelli, Bruno Cerra, Riccardo Ronchetti, Arne Schon, Francesca Fallarino, Antonella De Luca, Guido Bellezza, Ivana Ferri, Angelo Sidoni, William G Walton, Samuel J Pellock, Matthew R Redinbo, Sridhar Mani, Roberto Pellicciari, Antimo Gioiello, Francesco Galli

Abstract

Pregnane X receptor (PXR) is a master xenobiotic-sensing transcription factor and a validated target for immune and inflammatory diseases. The identification of chemical probes to investigate the therapeutic relevance of the receptor is still highly desired. In fact, currently available PXR ligands are not highly selective and can exhibit toxicity and/or potential off-target effects. In this study, we have identified garcinoic acid as a selective and efficient PXR agonist. The properties of this natural molecule as a specific PXR agonist were demonstrated by the screening on a panel of nuclear receptors, the assessment of the physical and thermodynamic binding affinity, and the determination of the PXR-garcinoic acid complex crystal structure. Cytotoxicity, transcriptional, and functional properties were investigated in human liver cells, and compound activity and target engagement were confirmed in vivo in mouse liver and gut tissue. In conclusion, garcinoic acid is a selective natural agonist of PXR and a promising lead compound toward the development of new PXR-regulating modulators.

Conflict of interest statement

The authors declare the following competing financial interest(s): A.G. and R.P. are cofounders of TES Pharma.

Figures

Chart 1. Chemical Structures of Garcinoic Acid…
Chart 1. Chemical Structures of Garcinoic Acid (GA, 1), α- and γ-Tocopherol (3, 4), δ-Tocotrienol (5), Long-Chain Metabolites (2, 69), and Short-Chain Carboxyethylhydroxychroman (CEHC) Metabolites (10, 11)
Scheme 1. Synthesis of Metabolites 2 ,…
Scheme 1. Synthesis of Metabolites 2, 69
Reagents and conditions: (a) 10% Pd/C cartridge (s-cart, 30 × 4 mm i.d.), 1 bar (full H2 mode), 25 °C, 1 mL min–1; (b) LiAlH4, THF, 0 °C → rt; (c) SnCl2, HCl 12 M, Et2O, (CH2O)n, 70 °C; (d) CH2N2, Et2O, 0 °C → rt; (e) methyl-1-bromo-2,3,4-tri-O-acetyl-α-d-glucuronate (13), Fetizon reagent, molecular sieves, toluene; (f) Na2CO3, MeOH, rt.
Figure 1
Figure 1
PXR agonist activity and binding properties of GA. Binding activity of GA (1) was assessed by the AlphaScreen test at 10 μM compound concentration (A) and during a dose-dependent experiment (B). Comparisons were made with a series of vitamin E compounds and the PXR agonist 0.05 μM T0901317 (see Table S1). Calorimetric titrations of GA binding to PXR-LBD (C) were investigated in comparison with compounds 2 and 5 dissolved in DMSO and then further diluted to 60 μM final concentration in 25 mM Hepes buffer, pH 7.5, containing 150 mM NaCl. The final concentration of PXR-LBD in the reaction mixture was 3 μM, and DMSO was 8% v/v.
Figure 2
Figure 2
PXR and CYP3A4 expression in HepG2 cells treated with garcinoic acid (1). siRNA technique was used to transiently inhibit PXR(A) or CYP3A4 (B) gene expression [*p < 0.05; **p < 0.01 vs WT or Ctr test; #p< 0.01 vs Rifampicin (RIF)]. PXR (C) and CYP3A4 (D) protein and mRNA (E) expression were also assessed in cells treated for 24 h with 1 and 25 μM GA (1). MDR1 mRNA expression (F) was evaluated at concentrations between 1 and 50 μM GA. The P-glycoprotein activity (G) was measured in the presence of GA between 50 nM and 25 μM (●), and Verapamil (▲) was used as a control. t test: control versus treatments, *p < 0.05; **p < 0.01.
Figure 3
Figure 3
Crystal structure of hPXR–garcinoic acid complex. (A) Overview of hPXR LBD–garcinoic acid complex. (B) 2.3 Å resolution X-ray diffraction data of crystals demonstrated that GA (gray) binds in a single orientation within the ligand binding pocket of hPXR, contacted by four amino acid side chains (cyan) and one main-chain region (M246–S247; cyan). Distances noted are in angstroms.
Figure 4
Figure 4
PXR, CYP3A4, and MDR1 expression in the liver of mice treated with garcinoic acid (1). Mice were treated with increasing doses of GA from 5 to 25 mg administered as a single bolus, and PXR mRNA (A) and protein expression (B, left panel) were measured in liver samples 24 h post-treatment. CYP3A4 (CYP3A11 in mice) and MDR1 protein expression were also investigated (B, middle and right panels); *p < 0.05; **p < 0.01. Liver histology was examined by hematoxylin and eosin (H&E) staining and IHC for PXR antigen (C).
Figure 5
Figure 5
PXR, CYP3A4, and MDR1 expression in the intestine of mice treated with garcinoic acid (1). Mice were treated with increasing doses of GA from 5 to 25 mg administered as a single bolus, and PXR mRNA (A) and protein expression (B, left panel) were measured in liver samples 24 h post-treatment. CYP3A4 (CYP3A11 in mice) and MDR1 protein expression were also investigated (B, middle and right panels); *p < 0.05; **p < 0.01. Liver histology was examined by hematoxylin and eosin (H&E) staining and IHC for PXR antigen (C).

References

    1. Kandel B. A.; Thomas M.; Winter S.; Seehofer D.; Burk O.; Schwab M.; Zanger U. M. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim. Biophys. Acta, Gene Regul. Mech. 2016, 1859, 1218–1227. 10.1016/j.bbagrm.2016.03.007.
    1. Kliewer S. A.; Goodwin B.; Willson T. M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 2002, 23, 687–70. 10.1210/er.2001-0038.
    1. Chen Y.; Tang Y.; Guo C.; Wang J.; Boral D.; Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol. 2012, 83, 1112–1126. 10.1016/j.bcp.2012.01.030.
    1. Banerjee M.; Chen T. Differential regulation of CYP3A4 promoter activity by a new class of natural product derivatives binding to pregnane X receptor. Biochem. Pharmacol. 2013, 86, 824–835. 10.1016/j.bcp.2013.07.023.
    1. Kliewer S. A.; Moore J. T.; Wade L.; Staudinger J. L.; Watson M. A.; Jones S. A.; McKee D. D.; Oliver B. B.; Willson T. M.; Zetterström R. H.; Perlmann T.; Lehmann J. M. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998, 92, 73–82. 10.1016/S0092-8674(00)80900-9.
    1. Blumberg B.; Sabbagh W. Jr.; Juguilon H.; Bolado J. Jr.; van Meter C. M.; Ong E. S.; Evans R. M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998, 12, 3195–3205. 10.1101/gad.12.20.3195.
    1. Fagerberg L.; Hallström B. M.; Oksvold P.; Kampf C.; Djureinovic D.; Odeberg J.; Habuka M.; Tahmasebpoor S.; Danielsson A.; Edlund K.; Asplund A.; Sjöstedt E.; Lundberg E.; Szigyarto C. A.; Skogs M.; Takanen J. O.; Berling H.; Tegel H.; Mulder J.; Nilsson P.; Schwenk J. M.; Lindskog C.; Danielsson F.; Mardinoglu A.; Sivertsson A.; von Feilitzen K.; Forsberg M.; Zwahlen M.; Olsson I.; Navani S.; Huss M.; Nielsen J.; Ponten F.; Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 2014, 13, 397–406. 10.1074/mcp.M113.035600.
    1. (accessed Nov. 15, 2019).
    1. Hogle B. C.; Guan X.; Folan M. M.; Xie W. PXR as a mediator of herb-drug interaction. J. Food Drug Anal. 2018, 26, S26–S31. 10.1016/j.jfda.2017.11.007.
    1. Wikoff W. R.; Anfora A. T.; Liu J.; Schultz P. G.; Lesley S. A.; Peters E. C.; Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3698–3703. 10.1073/pnas.0812874106.
    1. Venkatesh M.; Mukherjee S.; Wang H.; Li H.; Sun K.; Benechet A. P.; Qiu Z.; Maher L.; Redinbo M. R.; Phillips R. S.; Fleet J. C.; Kortagere S.; Mukherjee P.; Fasano A.; Le Ven J.; Nicholson J. K.; Dumas M. E.; Khanna K. M.; Mani S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014, 41, 296–310. 10.1016/j.immuni.2014.06.014.
    1. Galli F. Interactions of polyphenolic compounds with drug disposition and metabolism. Curr. Drug Metab. 2007, 8, 830–838. 10.2174/138920007782798180.
    1. Galli F.; Azzi A.; Birringer M.; Cook-Mills J. M.; Eggersdorfer M.; Frank J.; Cruciani G.; Lorkowski S.; Özer N. K. Vitamin E: emerging aspects and new directions. Free Radical Biol. Med. 2017, 102, 16–36. 10.1016/j.freeradbiomed.2016.09.017.
    1. Mani S.; Dou W.; Redinbo M. R. PXR antagonists and implication in drug metabolism. Drug Metab. Rev. 2013, 45, 60–72. 10.3109/03602532.2012.746363.
    1. Oladimeji P. O.; Chen T. PXR: more than just a master xenobiotic receptor. Mol. Pharmacol. 2018, 93, 119–127. 10.1124/mol.117.110155.
    1. Cave M. C.; Clair H. B.; Hardesty J. E.; Falkner K. C.; Feng W.; Clark B. J.; Sidey J.; Shi H.; Aqel B. A.; McClain C. J.; Prough R. A. Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta, Gene Regul. Mech. 2016, 1859, 1083–1099. 10.1016/j.bbagrm.2016.03.002.
    1. Lopez-Velazquez J. A.; Carrillo-Cordova L. D.; Chavez-Tapia N. C.; Uribe M.; Mendez-Sanchez N. Nuclear receptors in nonalcoholic fatty liver disease. J. Lipids 2012, 2012, 139875.10.1155/2012/139875.
    1. Kakizaki S.; Takizawa D.; Tojima H.; Horiguchi N.; Yamazaki Y.; Mori M. Nuclear receptors CAR and PXR; therapeutic targets for cholestatic liver disease. Front. Biosci., Landmark Ed. 2011, 16, 2988–3005. 10.2741/3893.
    1. Cheng J.; Shah Y. M.; Gonzalez F. J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci. 2012, 33, 323–330. 10.1016/j.tips.2012.03.003.
    1. Shah Y. M.; Ma X.; Morimura K.; Kim I.; Gonzalez F. J. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1114–1122. 10.1152/ajpgi.00528.2006.
    1. Gao J.; Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol. Sci. 2012, 33, 552–558. 10.1016/j.tips.2012.07.003.
    1. Lau A. J.; Yang G.; Yap C. W.; Chang T. K. Selective agonism of human pregnane X receptor by individual ginkgolides. Drug Metab. Dispos. 2012, 40, 1113–1121. 10.1124/dmd.112.045013.
    1. DuPont H. L. Therapy for and prevention of traveler’s diarrhea. Clin. Infect. Dis. 2007, 45 (Suppl. 1), S78–84. 10.1086/518155.
    1. Lawrence K. R.; Klee J. A. Rifaximin for the treatment of hepatic encephalopathy. Pharmacotherapy 2008, 28, 1019–1032. 10.1592/phco.28.8.1019.
    1. Administration USFDA . FDA Approves Two Therapies to Treat IBS-D, Release FN; U.S. Food and Drug Administration: Silver Spring, MD, 2015.
    1. Sartor R. B. Review article: the potential mechanisms of action of rifaximin in the management of inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 43 (Suppl. 1), 27–36. 10.1111/apt.13436.
    1. Podszun M. C.; Jakobi M.; Birringer M.; Weiss J.; Frank J. The long chain alpha-tocopherol metabolite alpha-13′-COOH and gamma-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180. Mol. Nutr. Food Res. 2017, 61, 1600605.10.1002/mnfr.201600605.
    1. Galli F.; Polidori M. C.; Stahl W.; Mecocci P.; Kelly F. J. Vitamin E biotransformation in humans. Vitam. Horm. 2007, 76, 263–280. 10.1016/S0083-6729(07)76009-0.
    1. Schubert M.; Kluge S.; Schmölz L.; Wallert M.; Galli F.; Birringer M.; Lorkowski S. Long-chain metabolites of vitamin E: metabolic activation as a general concept for lipid-soluble vitamins?. Antioxidants 2018, 7, E10.10.3390/antiox7010010.
    1. Birringer M.; Drogan D.; Brigelius-Flohe R. Tocopherols are metabolized in HepG2 cells by side chain omega-oxidation and consecutive beta-oxidation. Free Radical Biol. Med. 2001, 31, 226–232. 10.1016/S0891-5849(01)00574-3.
    1. Birringer M.; Pfluger P.; Kluth D.; Landes N.; Brigelius-Flohe R. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J. Nutr. 2002, 132, 3113–3118. 10.1093/jn/131.10.3113.
    1. Marinelli R.; Torquato P.; Bartolini D.; Mas-Bargues C.; Bellezza G.; Gioiello A.; Borras C.; Fallarino F.; Mani S.; Sidoni A.; Viña J.; Galli F., manuscript in preparation.
    1. Mazzini F.; Betti M.; Netscher T.; Galli F.; Salvadori P. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds. Chirality 2009, 21, 519–524. 10.1002/chir.20630.
    1. Wallert M.; Bauer J.; Kluge S.; Schmölz L.; Chen Y. C.; Ziegler M.; Searle A. K.; Maxones A.; Schubert M.; Thürmer M.; Pein H.; Koeberle A.; Werz O.; Birringer M.; Peter K.; Lorkowski S. The vitamin E derivative garcinoic acid from Garcinia kola nut seeds attenuates the inflammatory response. Redox Biol. 2019, 24, 101166.10.1016/j.redox.2019.101166.
    1. Birringer M.; Lington D.; Vertuani S.; Manfredini S.; Scharlau D.; Glei M.; Ristow M. Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress. Free Radical Biol. Med. 2010, 49, 1315–1322. 10.1016/j.freeradbiomed.2010.07.024.
    1. Terashima K.; Takaya Y.; Niwa M. Powerful antioxidative agents based on garcinoic acid from Garcinia kola. Bioorg. Med. Chem. 2002, 10, 1619–1625. 10.1016/S0968-0896(01)00428-X.
    1. Mostarda S.; Filipponi P.; Sardella R.; Venturoni F.; Natalini B.; Pellicciari R.; Gioiello A. Glucuronidation of bile acids under flow conditions: design of experiments and Koenigs–Knorr reaction optimization. Org. Biomol. Chem. 2014, 12, 9592–9600. 10.1039/C4OB01911C.
    1. Xue Y.; Chao E.; Zuercher W. J.; Willson T. M.; Collins J. L.; Redinbo M. R. Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. Bioorg. Med. Chem. 2007, 15, 2156–2166. 10.1016/j.bmc.2006.12.026.
    1. Dou W.; Mukherjee S.; Li H.; Venkatesh M.; Wang H.; Kortagere S.; Peleg A.; Chilimuri S. S.; Wang Z. T.; Feng Y.; Fearon E. R.; Mani S. Alleviation of gut inflammation by Cdx2/Pxr pathway in a mouse model of chemical colitis. PLoS One 2012, 7, e3607510.1371/journal.pone.0036075.
    1. Velazquez-Campoy A.; Todd M. J.; Freire E. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Biochemistry 2000, 39, 2201–2207. 10.1021/bi992399d.
    1. Ruben A. J.; Kiso Y.; Freire E. Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem. Biol. Drug Des. 2006, 67, 2–4. 10.1111/j.1747-0285.2005.00314.x.
    1. Zhou C.; Poulton E. J.; Grün F.; Bammler T. K.; Blumberg B.; Thummel K. E.; Eaton D. L. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol. Pharmacol. 2007, 71, 220–229. 10.1124/mol.106.029264.
    1. Leist M.; Raab B.; Maurer S.; Rösick U.; Brigelius-Flohé R. Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radical Biol. Med. 1996, 21, 297–306. 10.1016/0891-5849(96)00045-7.
    1. Goodwin B.; Hodgson E.; Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 1999, 56, 1329–1339. 10.1124/mol.56.6.1329.
    1. Toriyabe T.; Nagata K.; Takada T.; Aratsu Y.; Matsubara T.; Yoshinari K.; Yamazoe Y. Unveiling a new essential cis element for the transactivation of the CYP3A4 gene by xenobiotics. Mol. Pharmacol. 2009, 75, 677–684. 10.1124/mol.108.050575.
    1. Torquato P.; Bartolini D.; Giusepponi D.; Saluti G.; Russo A.; Barola C.; Birringer M.; Galarini R.; Galli F. a-13′-OH is the main product of a-tocopherol metabolism and influences CYP4F2 and PPAR- Gene expression in HepG2 human hepatocarcinoma cells. Free Radical Biol. Med. 2016, 96, S19–S20. 10.1016/j.freeradbiomed.2016.04.159.
    1. Russo A.; Bartolini D.; Torquato P.; Giusepponi D.; Barola C.; Galarini R.; Birringer M.; Lorkowski S.; Galli F. CYP4F2 repression and a modified alpha-tocopherol (vitamin E) metabolism are two independent consequences of ethanol toxicity in human hepatocytes. Toxicol. In Vitro 2017, 40, 124–133. 10.1016/j.tiv.2016.12.014.
    1. Landes N.; Pfluger P.; Kluth D.; Birringer M.; Rühl R.; Böl G. F.; Glatt H.; Brigelius-Flohé R. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 2003, 65, 269–273. 10.1016/S0006-2952(02)01520-4.
    1. Pein H.; Ville A.; Pace S.; Temml V.; Garscha U.; Raasch M.; Alsabil K.; Viault G.; Dinh C.-P.; Guilet D.; Troisi F.; Neukirch K.; König S.; Bilancia R.; Waltenberger B.; Stuppner H.; Wallert M.; Lorkowski S.; Weinigel C.; Rummler S.; Birringer M.; Roviezzo F.; Sautebin L.; Helesbeux J.-J.; Séraphin D.; Mosig A. S.; Schuster D.; Rossi A.; Richomme P.; Werz P. O.; Koeberle A. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat. Commun. 2018, 9, 3834.10.1038/s41467-018-06158-5.
    1. Torquato P.; Giusepponi D.; Alisi A.; Galarini R.; Bartolini D.; Piroddi M.; Goracci L.; Di Veroli A.; Cruciani G.; Crudele A.; Nobili V.; Galli F. Nutritional and lipidomics biomarkers of docosahexaenoic acid-based multivitamin therapy in pediatric NASH. Sci. Rep. 2019, 9, 2045.10.1038/s41598-018-37209-y.
    1. Torquato P.; Bartolini D.; Giusepponi D.; Piroddi M.; Sebastiani B.; Saluti G.; Galarini R.; Galli F. Increased plasma levels of the lipoperoxyl radical-derived vitamin E metabolite α-tocopheryl quinone are an early indicator of lipotoxicity in fatty liver subjects. Free Radical Biol. Med. 2019, 131, 115–125. 10.1016/j.freeradbiomed.2018.11.036.
    1. Terashima K.; Shimamura T.; Tanabayashi M.; Aqil M.; Akinniyi J. A.; Niwa M. Constituents of the seeds of Garcinia Kola: two new antioxidants, garcinoic acid and garcinal. Heterocycles 1997, 45, 1559–1566. 10.3987/COM-97-7854.
    1. Wang W.; Prosise W. W.; Chen J.; Taremi S. S.; Le H. V.; Madison V.; Cui X.; Thomas A.; Cheng K. C.; Lesburg C. A. Construction and characterization of a fully active PXR/SRC-1 tethered protein with increased stability. Protein Eng., Des. Sel. 2008, 21, 425–433. 10.1093/protein/gzn017.
    1. Kabsch W. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125–132. 10.1107/S0907444909047337.
    1. Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G. W.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235–242. 10.1107/S0907444910045749.
    1. Rizzo G.; Passeri D.; De Franco F.; Ciaccioli G.; Donadio L.; Rizzo G.; Orlandi S.; Sadeghpour B.; Wang X. X.; Jiang T.; Levi M.; Pruzanski M.; Adorini L. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol. Pharmacol. 2010, 78, 617–630. 10.1124/mol.110.064501.
    1. Wallace B. D.; Betts L.; Talmage G.; Pollet R. M.; Holman N. S.; Redinbo M. R. Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRα. J. Mol. Biol. 2013, 425, 2561–2577. 10.1016/j.jmb.2013.04.012.
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. 10.1016/0022-1759(83)90303-4.
    1. Bartolini D.; Commodi J.; Piroddi M.; Incipini L.; Sancineto L.; Santi C.; Galli F. Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides. Free Radical Biol. Med. 2015, 88, 466–480. 10.1016/j.freeradbiomed.2015.06.039.

Source: PubMed

3
S'abonner