Peg-Interferon Lambda Treatment Induces Robust Innate and Adaptive Immunity in Chronic Hepatitis B Patients

Sandra Phillips, Sameer Mistry, Antonio Riva, Helen Cooksley, Tanya Hadzhiolova-Lebeau, Slava Plavova, Krum Katzarov, Marieta Simonova, Stephan Zeuzem, Clive Woffendin, Pei-Jer Chen, Cheng-Yuan Peng, Ting-Tsung Chang, Stefan Lueth, Robert De Knegt, Moon-Seok Choi, Heiner Wedemeyer, Michael Dao, Chang-Wook Kim, Heng-Chen Chu, Megan Wind-Rotolo, Roger Williams, Elizabeth Cooney, Shilpa Chokshi, Sandra Phillips, Sameer Mistry, Antonio Riva, Helen Cooksley, Tanya Hadzhiolova-Lebeau, Slava Plavova, Krum Katzarov, Marieta Simonova, Stephan Zeuzem, Clive Woffendin, Pei-Jer Chen, Cheng-Yuan Peng, Ting-Tsung Chang, Stefan Lueth, Robert De Knegt, Moon-Seok Choi, Heiner Wedemeyer, Michael Dao, Chang-Wook Kim, Heng-Chen Chu, Megan Wind-Rotolo, Roger Williams, Elizabeth Cooney, Shilpa Chokshi

Abstract

IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are limited data regarding its impact on host immune responses in vivo. We performed longitudinal and comprehensive immunosurveillance to assess the ability of pegylated (peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the efficacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ provoked high serum levels of antiviral cytokine IL-18. We also observed the enhancement of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral and cytotoxic activities. It was only in these patients that we observed strong virological control with reductions in both viral replication and HBV antigen levels. Here, we show for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to previous studies showing that peg-IFNα treatment for CHB results in a detrimental effect on the functionality of this important antiviral T cell compartment.

Clinical trial registration: ClinicalTrials.gov NCT01204762.

Keywords: direct antiviral; hepatitis B; immunity; in vivo; peg-interferon lambda.

Figures

Figure 1
Figure 1
Study design. All 13 patients were treated with entecavir (ETV) for 12 weeks and subsequently received ETV + pegIFN-λ. The weeks of treatment reached by the patients are shown. Peripheral blood mononuclear cells (PBMC) collection are also indicated.
Figure 2
Figure 2
Effect of treatment on natural killer (NK) cells response in Group 1 and Group 2 patients (n = 13). Percentage of (A) tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-positive CD56bright NK cells (B) CD107a-producing cytotoxic CD56dim NK cells, (C) IFN-γ producing CD56bright, (D) NKG2D-positive CD56bright, and (E) NKG2D-positive CD56dim were measured by flow cytometry. A total of 100,000 events were collected during FACS acquisition and the subsequent analysis was performed using FACS DIVA software. Data are shown as mean ± SEM. Two-way ANOVA followed by multiple comparison tests were performed for statistical analysis.
Figure 3
Figure 3
Effect of treatment on HBV-specific T cells and T regs response in Group 1 and Group 2 patients (n = 13). The frequency of IFN-γ-producing HBV-specific T cells was evaluated by ELISPOT following peripheral blood mononuclear cells (PBMC) stimulation with HBV antigens and HBV-specific overlapping peptides. PBMC stimulation with recall antigen purified protein derivate and mitogen phytohemagglutinin elicited a measurable strong response which did not change significantly during the course of the treatment. (A) ELISPOT quantitation of frequency of IFN-γ-producing HBV-specific T cells. (B) Heat map representation of the percentage of patients reacting to each individual HBV antigen and peptide pool in ELISPOT. The assessment of the functionality of T cells was performed by FACS following two rounds of stimulation with HBV antigens and HBV-specific overlapping peptides covering HBV core and HBV surface regions. (C) IFN-γ-producing HBV-specific CD4+ T cells, (D) IFN-γ-producing HBV-specific CD8+ T cells, (E) CD107a-producing HBV-specific CD8+ T cells, and (F) T regulatory cells were quantitated by FACS. A total of 100,000 events were collected during FACS acquisition and the subsequent analysis was performed using FACS DIVA software. Data are shown as mean ± SEM. Two-way ANOVA followed multiple comparison tests were performed for statistical analysis.
Figure 4
Figure 4
Effect of treatment on serum cytokines production during treatment in patients group 1 and group 2 (n = 13). Cytokines (A) IL-18, (B) IL-8, (C) IL15, (D) IL-17, (E) IP-10, (F) IFN-α, and (G) IFN-β were measured in the sera of patients by cytometric bead array or ELISA. Data are shown as mean ± SEM. Two-way ANOVA followed by multiple comparison tests were performed for statistical analysis.

References

    1. Levy DE, Garcia-Sastre A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev (2001) 12:143–56.10.1016/S1359-6101(00)00027-7
    1. Huber JP, Farrar JD. Regulation of effector and memory T-cell functions by type I interferon. Immunology (2011) 132:466–74.10.1111/j.1365-2567.2011.03412.x
    1. Levy DE, Marie IJ, Durbin JE. Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol (2011) 1:476–86.10.1016/j.coviro.2011.11.001
    1. Heim MH. Interferons and hepatitis C virus. Swiss Med Wkly (2012) 142:w13586.10.4414/smw.2012.13586
    1. Gibbert K, Schlaak JF, Yang D, Dittmer U. IFN-alpha subtypes: distinct biological activities in anti-viral therapy. Br J Pharmacol (2013) 168:1048–58.10.1111/bph.12010
    1. Pagliaccetti NE, Chu EN, Bolen CR, Kleinstein SH, Robek MD. Lambda and alpha interferons inhibit hepatitis B virus replication through a common molecular mechanism but with different in vivo activities. Virology (2010) 401:197–206.10.1016/j.virol.2010.02.022
    1. EASL. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol (2012) 57:167–85.10.1016/j.jhep.2012.02.010
    1. Konerman MA, Lok AS. Interferon treatment for hepatitis B. Clin Liver Dis (2016) 20:645–65.10.1016/j.cld.2016.06.002
    1. Kittner JM, Sprinzl MF, Grambihler A, Weinmann A, Schattenberg JM, Galle PR, et al. Adding pegylated interferon to a current nucleos(t)ide therapy leads to HBsAg seroconversion in a subgroup of patients with chronic hepatitis B. J Clin Virol (2012) 54:93–5.10.1016/j.jcv.2012.01.024
    1. Boglione L, D’avolio A, Cariti G, Milia MG, Simiele M, De NA, et al. Sequential therapy with entecavir and PEG-INF in patients affected by chronic hepatitis B and high levels of HBV-DNA with non-D genotypes. J Viral Hepat (2013) 20:e11–9.10.1111/jvh.12018
    1. Ouzan D, Penaranda G, Joly H, Khiri H, Pironti A, Halfon P. Add-on peg-interferon leads to loss of HBsAg in patients with HBeAg-negative chronic hepatitis and HBV DNA fully suppressed by long-term nucleotide analogs. J Clin Virol (2013) 58:713–7.10.1016/j.jcv.2013.09.020
    1. Penna A, Laccabue D, Libri I, Giuberti T, Schivazappa S, Alfieri A, et al. Peginterferon-alpha does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J Hepatol (2012) 56:1239–46.10.1016/j.jhep.2011.12.032
    1. Micco L, Peppa D, Loggi E, Schurich A, Jefferson L, Cursaro C, et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J Hepatol (2013) 58:225–33.10.1016/j.jhep.2012.09.029
    1. Tan AT, Hoang LT, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFNalpha therapy. J Hepatol (2014) 60:54–61.10.1016/j.jhep.2013.08.020
    1. Stelma F, De NA, Tempelmans Plat-Sinnige MJ, Jansen L, Takkenberg RB, Reesink HW, et al. Natural killer cell characteristics in patients with chronic hepatitis B virus (HBV) infection are associated with HBV surface antigen clearance after combination treatment with pegylated interferon alfa-2a and adefovir. J Infect Dis (2015) 212:1042–51.10.1093/infdis/jiv180
    1. Dai J, Megjugorac NJ, Gallagher GE, Yu RY, Gallagher G. IFN-lambda1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells. Blood (2009) 113:5829–38.10.1182/blood-2008-09-179507
    1. Megjugorac NJ, Gallagher GE, Gallagher G. Modulation of human plasmacytoid DC function by IFN-lambda1 (IL-29). J Leukoc Biol (2009) 86:1359–63.10.1189/jlb.0509347
    1. Witte K, Gruetz G, Volk HD, Looman AC, Asadullah K, Sterry W, et al. Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun (2009) 10:702–14.10.1038/gene.2009.72
    1. De Groen RA, Boltjes A, Hou J, Liu BS, Mcphee F, Friborg J, et al. IFN-lambda-mediated IL-12 production in macrophages induces IFN-gamma production in human NK cells. Eur J Immunol (2015) 45(1):250–9.10.1002/eji.201444903
    1. Kelly A, Robinson MW, Roche G, Biron CA, O’farrelly C, Ryan EJ. Immune cell profiling of IFN-lambda response shows pDCs express highest level of IFN-lambdaR1 and are directly responsive via the JAK-STAT pathway. J Interferon Cytokine Res (2016) 36:671–80.10.1089/jir.2015.0169
    1. Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R, Storey H, et al. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology (2006) 44:896–906.10.1002/hep.21312
    1. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, Macdonald MR, et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology (2006) 131:1887–98.10.1053/j.gastro.2006.09.052
    1. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog (2008) 4:e1000017.10.1371/journal.ppat.1000017
    1. Liu BS, Janssen HL, Boonstra A. IL-29 and IFNalpha differ in their ability to modulate IL-12 production by TLR-activated human macrophages and exhibit differential regulation of the IFNgamma receptor expression. Blood (2011) 117:2385–95.10.1182/blood-2010-07-298976
    1. Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, et al. IL-28 elicits antitumor responses against murine fibrosarcoma. J Immunol (2007) 178:5086–98.10.4049/jimmunol.178.8.5086
    1. Dring MM, Morrison MH, Mcsharry BP, Guinan KJ, Hagan R, Irish HCV Research Consortium et al. Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection. Proc Natl Acad Sci U S A (2011) 108:5736–41.10.1073/pnas.1016358108
    1. Morrison MH, Keane C, Quinn LM, Kelly A, O’farrelly C, Bergin C, et al. IFNL cytokines do not modulate human or murine NK cell functions. Hum Immunol (2014) 75:996–1000.10.1016/j.humimm.2014.06.016
    1. Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T. Antitumor activity of IFN-lambda in murine tumor models. J Immunol (2006) 176:7686–94.10.4049/jimmunol.176.12.7686
    1. Jordan WJ, Eskdale J, Srinivas S, Pekarek V, Kelner D, Rodia M, et al. Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun (2007) 8:254–61.10.1038/sj.gene.6364348
    1. Koltsida O, Hausding M, Stavropoulos A, Koch S, Tzelepis G, Ubel C, et al. IL-28A (IFN-lambda2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease. EMBO Mol Med (2011) 3:348–61.10.1002/emmm.201100142
    1. Boni C, Fisicaro P, Valdatta C, Amadei B, Di VP, Giuberti T, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol (2007) 81:4215–25.10.1128/JVI.02844-06
    1. Lau GK, Cooksley H, Ribeiro RM, Powers KA, Shudo E, Bowden S, et al. Impact of early viral kinetics on T-cell reactivity during antiviral therapy in chronic hepatitis B. Antivir Ther (2007) 12:705–18.
    1. Cooksley H, Chokshi S, Maayan Y, Wedemeyer H, Andreone P, Gilson R, et al. Hepatitis B virus e antigen loss during adefovir dipivoxil therapy is associated with enhanced virus-specific CD4+ T-cell reactivity. Antimicrob Agents Chemother (2008) 52:312–20.10.1128/AAC.00467-07
    1. Evans A, Riva A, Cooksley H, Phillips S, Puranik S, Nathwani A, et al. Programmed death 1 expression during antiviral treatment of chronic hepatitis B: impact of hepatitis B e-antigen seroconversion. Hepatology (2008) 48:759–69.10.1002/hep.22419
    1. Fisicaro P, Valdatta C, Massari M, Loggi E, Biasini E, Sacchelli L, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology (2010) 138:682–93, 693.e1–4.10.1053/j.gastro.2009.09.052
    1. Tjwa ET, Van Oord GW, Hegmans JP, Janssen HL, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol (2011) 54:209–18.10.1016/j.jhep.2010.07.009
    1. Chokshi S, Cooksley H, Riva A, Phillips S, Williams R, Gaggar A, et al. Identification of serum cytokine profiles associated with HBeAg seroconversion following antiviral treatment interruption. Viral Immunol (2014) 27:235–44.10.1089/vim.2014.0022
    1. Rehermann B. Natural killer cells in viral hepatitis. Cell Mol Gastroenterol Hepatol (2015) 1:578–88.10.1016/j.jcmgh.2015.09.004
    1. Penna A, Artini M, Cavalli A, Levrero M, Bertoletti A, Pilli M, et al. Long-lasting memory T cell responses following self-limited acute hepatitis B. J Clin Invest (1996) 98:1185–94.10.1172/JCI118902
    1. Lau GK, Liang R, Chiu EK, Lee CK, Lam SK. Hepatic events after bone marrow transplantation in patients with hepatitis B infection: a case controlled study. Bone Marrow Transplant (1997) 19:795–9.10.1038/sj.bmt.1700744
    1. Lau GK, Lok AS, Liang RH, Lai CL, Chiu EK, Lau YL, et al. Clearance of hepatitis B surface antigen after bone marrow transplantation: role of adoptive immunity transfer. Hepatology (1997) 25:1497–501.10.1002/hep.510250631
    1. Lau GK, Liang R, Lee CK, Yuen ST, Hou J, Lim WL, et al. Clearance of persistent hepatitis B virus infection in Chinese bone marrow transplant recipients whose donors were anti-hepatitis B core- and anti-hepatitis B surface antibody-positive. J Infect Dis (1998) 178:1585–91.10.1086/314497
    1. Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology (2000) 32:1117–24.10.1053/jhep.2000.19324
    1. Riva A, Laird M, Casrouge A, Ambrozaitis A, Williams R, Naoumov NV, et al. Truncated CXCL10 is associated with failure to achieve spontaneous clearance of acute hepatitis C infection. Hepatology (2014) 60(2):487–96.10.1002/hep.27139
    1. Markwick LJ, Riva A, Ryan JM, Cooksley H, Palma E, Tranah TH, et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology (2015) 148:590–602.10.1053/j.gastro.2014.11.041
    1. Chan HL, Ahn SH, Chang TT, Peng CY, Wong D, Coffin CS, et al. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: a randomized phase 2b study (LIRA-B). J Hepatol (2016) 64:1011–9.10.1016/j.jhep.2015.12.018
    1. Chang TT, Gish RG, De MR, Gadano A, Sollano J, Chao YC, et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med (2006) 354:1001–10.10.1056/NEJMoa051285
    1. Leung N, Peng CY, Hann HW, Sollano J, Lao-Tan J, Hsu CW, et al. Early hepatitis B virus DNA reduction in hepatitis B e antigen-positive patients with chronic hepatitis B: a randomized international study of entecavir versus adefovir. Hepatology (2009) 49:72–9.10.1002/hep.22658
    1. Lampertico P, Liaw YF. New perspectives in the therapy of chronic hepatitis B. Gut (2012) 61(Suppl 1):i18–24.10.1136/gutjnl-2012-302085
    1. Tseng TC, Kao JH. Clinical utility of quantitative HBsAg in natural history and nucleos(t)ide analogue treatment of chronic hepatitis B: new trick of old dog. J Gastroenterol (2013) 48:13–21.10.1007/s00535-012-0668-y
    1. Honer Zu SC, Cornberg M. The role of HBsAg levels in the current management of chronic HBV infection. Ann Gastroenterol (2014) 27:105–12.
    1. Van Campenhout MJ, Janssen HL. How to achieve immune control in chronic hepatitis B? Hepatol Int (2015) 9:9–16.10.1007/s12072-014-9571-3
    1. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med (2007) 204:667–80.10.1084/jem.20061287
    1. Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, Mavilio D, et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology (2009) 137:1151–60, 1160.e1–7.10.1053/j.gastro.2009.05.047
    1. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, et al. TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog (2012) 8:e1002594.10.1371/journal.ppat.1002594
    1. Gish RG, Given BD, Lai CL, Locarnini SA, Lau JY, Lewis DL, et al. Chronic hepatitis B: virology, natural history, current management and a glimpse at future opportunities. Antiviral Res (2015) 121:47–58.10.1016/j.antiviral.2015.06.008
    1. Webster GJ, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol (2004) 78:5707–19.10.1128/JVI.78.11.5707-5719.2004
    1. Perussia B. The cytokine profile of resting and activated NK cells. Methods (1996) 9:370–8.10.1006/meth.1996.0042
    1. Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death Differ (2008) 15:226–33.10.1038/sj.cdd.4402170
    1. Strowig T, Brilot F, Munz C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol (2008) 180:7785–91.10.4049/jimmunol.180.12.7785
    1. Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog (2010) 6:e1001227.10.1371/journal.ppat.1001227
    1. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med (2000) 191:1269–80.10.1084/jem.191.8.1269
    1. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol (2002) 2:85–95.10.1038/nri724
    1. You J, Sriplung H, Geater A, Chongsuvivatwong V, Zhuang L, Li YL, et al. Impact of viral replication inhibition by entecavir on peripheral T lymphocyte subpopulations in chronic hepatitis B patients. BMC Infect Dis (2008) 8:123.10.1186/1471-2334-8-123
    1. Boni C, Laccabue D, Lampertico P, Giuberti T, Vigano M, Schivazappa S, et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology (2012) 143:963–73.10.1053/j.gastro.2012.07.014
    1. Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV. CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol (2010) 184:287–95.10.4049/jimmunol.0902761
    1. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol (2006) 80:4501–9.10.1128/JVI.80.9.4501-4509.2006
    1. Ye B, Liu X, Li X, Kong H, Tian L, Chen Y. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis (2015) 6:e1694.10.1038/cddis.2015.42
    1. Lu J-J, Chen E-Q, Yang J-H, Zhou T-Y, Liu L, Tang H. A mutation in the interferon regulatory element of HBV may influence the response of interferon treatment in chronic hepatitis B patients. Virol J (2012) 9:10.10.1186/1743-422X-9-10
    1. Chen J, Wu M, Wang F, Zhang W, Wang W, Zhang X, et al. Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep (2015) 5:16459.10.1038/srep16459
    1. Wu HL, Hsiao TH, Chen PJ, Wong SH, Kao JH, Chen DS, et al. Liver gene expression profiles correlate with virus infection and response to interferon therapy in chronic hepatitis B patients. Sci Rep (2016) 6:31349.10.1038/srep31349
    1. Du L-Y, Cui Y-L, Chen E-Q, Cheng X, Liu L, Tang H. Correlation between the suppressor of cytokine signaling-1 and 3 and hepatitis B virus: possible roles in the resistance to interferon treatment. Virol J (2014) 11:51.10.1186/1743-422X-11-51
    1. Wei H, Wang S, Chen Q, Chen Y, Chi X, Zhang L, et al. Suppression of interferon lambda signaling by SOCS-1 results in their excessive production during influenza virus infection. PLoS Pathog (2014) 10:e1003845.10.1371/journal.ppat.1003845
    1. Barnes E, Gelderblom HC, Humphreys I, Semmo N, Reesink HW, Beld MG, et al. Cellular immune responses during high-dose interferon-alpha induction therapy for hepatitis C virus infection. J Infect Dis (2009) 199:819–28.10.1086/597072
    1. Marshall HD, Urban SL, Welsh RM. Virus-induced transient immune suppression and the inhibition of T cell proliferation by type I interferon. J Virol (2011) 85:5929–39.10.1128/JVI.02516-10
    1. O’Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest (2011) 121:1088–101.10.1172/JCI44960
    1. Pinto AK, Daffis S, Brien JD, Gainey MD, Yokoyama WM, Sheehan KC, et al. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLoS Pathog (2011) 7:e1002407.10.1371/journal.ppat.1002407
    1. Brunetto MR, Moriconi F, Bonino F, Lau GK, Farci P, Yurdaydin C, et al. Hepatitis B virus surface antigen levels: a guide to sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B. Hepatology (2009) 49:1141–50.10.1002/hep.22760
    1. Chan HL, Wong VW, Wong GL, Tse CH, Chan HY, Sung JJ. A longitudinal study on the natural history of serum hepatitis B surface antigen changes in chronic hepatitis B. Hepatology (2010) 52:1232–41.10.1002/hep.23803

Source: PubMed

3
S'abonner