Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies

Ashley Ansel, Joshua P Rosenzweig, Philip D Zisman, Michal Melamed, Benjamin Gesundheit, Ashley Ansel, Joshua P Rosenzweig, Philip D Zisman, Michal Melamed, Benjamin Gesundheit

Abstract

Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental conditions that present in early childhood and have a current estimated prevalence of about 1 in 68 US children, 1 in 42 boys. ASDs are heterogeneous, and arise from epigenetic, genetic and environmental origins, yet, the exact etiology of ASDs still remains unknown. Individuals with ASDs are characterized by having deficits in social interaction, impaired communication and a range of stereotyped and repetitive behaviors. Currently, a diagnosis of ASD is based solely on behavioral assessments and phenotype. Hundreds of diverse ASD susceptibility genes have been identified, yet none of the mutations found account for more than a small subset of autism cases. Therefore, a genetic diagnosis is not yet possible for the majority of the ASD population. The susceptibility genes that have been identified are involved in a wide and varied range of biological functions. Since the genetics of ASDs is so diverse, information on genome function as provided by transcriptomic data is essential to further our understanding. Gene expression studies have been extremely useful in comparing groups of individuals with ASD and control samples in order to measure which genes (or group of genes) are dysregulated in the ASD group. Transcriptomic studies are essential as a key link between measuring protein levels and analyzing genetic information. This review of recent autism gene expression studies highlights genes that are expressed in the brain, immune system, and processes such as cell metabolism and embryology. Various biological processes have been shown to be implicated with ASD individuals as well as differences in gene expression levels between different types of biological tissues. Some studies use gene expression to attempt to separate autism into different subtypes. An updated list of genes shown to be significantly dysregulated in individuals with autism from all recent ASD expression studies will help further research isolate any patterns useful for diagnosis or understanding the mechanisms involved. The functional relevance of transcriptomic studies as a method of classifying and diagnosing ASD cannot be underestimated despite the possible limitations of transcriptomic studies.

Keywords: Fragile X Syndrome; autism spectrum disorders (ASD); gene expression; immune system; lymphoblastoid cell lines; monozygotic twins; neurogenesis and inflammation.

References

    1. Abrahams B. S., Geschwind D. H. (2008). Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet. 9, 341–355. 10.1038/nrg2346
    1. Alter M. D., Kharkar R., Ramsey K. E., Craig D. W., Melmed R. D., Grebe T. A., et al. . (2011). Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS ONE 6:e16715. 10.1371/journal.pone.0016715
    1. Anitha A., Nakamura K., Thanseem I., Yamada K., Iwayama Y., Toyota T., et al. . (2012). Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol. Autism 3:12. 10.1186/2040-2392-3-12
    1. Chana G., Laskaris L., Pantelis C., Gillett P., Testa R., Zantomio D., et al. . (2015). Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: Pathophysiological and neurobehavioral implications. Brain Behav. Immun. 49, 197–205. 10.1016/j.bbi.2015.05.009
    1. Chien W. H., Gau S. S., Chen C. H., Tsai W. C., Wu Y. Y., Chen P. H., et al. . (2013). Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol. Autism 4:23. 10.1186/2040-2392-4-23
    1. Chow M. L., Pramparo T., Winn M. E., Barnes C. C., Li H. R., Weiss L., et al. . (2012). Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet. 8:e1002592. 10.1371/journal.pgen.1002592
    1. Christensen D. L., Baio J., Van Naarden Braun K., Bilder D., Charles J., Constantino J. N. (2016). Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years–Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR. Surveill. Summ. 65, 1–23. 10.15585/mmwr.ss6503a1
    1. Courchesne E., Mouton P. R., Calhoun M. E., Semendeferi K., Ahrens-Barbeau C., Hallet M. J., et al. . (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA 306, 2001–2010. 10.1001/jama.2011.1638
    1. Emanuele E., Boso M., Cassola F., Broglia D., Bonoldi I., Mancini L., et al. . (2010). Increased dopamine DRD4 receptor mRNA expression in lymphocytes of musicians and autistic individuals: bridging the music-autism connection. Neuro Endocrinol. Lett. 31, 122–125.
    1. Enstrom A. M., Lit L., Onore C. E., Gregg J. P., Hansen R. L., Pessah I. N., et al. . (2009). Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav. Immun. 23, 124–133. 10.1016/j.bbi.2008.08.001
    1. Féron F., Gepner B., Lacassagne E., Stephan D., Mesnage B., Blanchard M. P., et al. . (2016). Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol. Psychiatry 21, 1215–1224. 10.1038/mp.2015.106
    1. Garbett K., Ebert P. J., Mitchell A., Lintas C., Manzi B., Mirnics K., et al. . (2008). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30, 303–311. 10.1016/j.nbd.2008.01.012
    1. Gesundheit B., Rosenzweig J. P., Naor D., Lerer B., Zachor D. A., Prochazka V., et al. . (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. J. Autoimmun. 44, 1–7. 10.1016/j.jaut.2013.05.005
    1. Ginsberg M. R., Rubin R. A., Falcone T., Ting A. H., Natowicz M. R. (2012). Brain transcriptional and epigenetic associations with autism. PLoS ONE 7:e44736. 10.1371/journal.pone.0044736
    1. Glatt S. J., Tsuang M. T., Winn M., Chandler S. D., Collins M., Lopez L., et al. . (2012). Blood-based gene expression signatures of infants and toddlers with autism. J. Am. Acad. Child Adolesc. Psychiatry 51, 934-44 e2. 10.1016/j.jaac.2012.07.007
    1. Gregg J. P., Lit L., Baron C. A., Hertz-Picciotto I., Walker W., Davis R. A., et al. . (2008). Gene expression changes in children with autism. Genomics 91, 22–29. 10.1016/j.ygeno.2007.09.003
    1. Hazlett H. C., Poe M. D., Gerig G., Styner M., Chappell C., Smith R. G., et al. . (2011). Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch. Gen. Psychiatry 68, 467–476. 10.1001/archgenpsychiatry.2011.39
    1. Hu V. W., Frank B. C., Heine S., Lee N. H., Quackenbush J. (2006). Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7:118. 10.1186/1471-2164-7-118
    1. Hu V. W., Sarachana T., Kim K. S., Nguyen A., Kulkarni S., Steinberg M. E., et al. . (2009). Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res. 2, 78–97. 10.1002/aur.73
    1. Ivanov H. Y., Stoyanova V. K., Popov N. T., Bosheva M., Vachev T. I. (2015). Blood-Based Gene Expression in children with Autism spectrum disorder. BioDiscovery 17:2 10.7750/BioDiscovery.2015.17.2
    1. James S. J., Shpyleva S., Melnyk S., Pavliv O., Pogribny I. P. (2014). Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl. Psychiatry 4:e460. 10.1038/tp.2014.87
    1. Kang H. J., Kawasawa Y. I., Cheng F., Zhu Y., Xu X., Li M., et al. . (2011). Spatio-temporal transcriptome of the human brain. Nature 478, 483–489. 10.1038/nature10523
    1. Kates W. R., Burnette C. P., Eliez S., Strunge L. A., Kaplan D., Landa R., et al. . (2004). Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am. J. Psychiatry 161, 539–546. 10.1176/appi.ajp.161.3.539
    1. Khan A., Harney J. W., Zavacki A. M., Sajdel-Sulkowska E. M. (2014). Disrupted brain thyroid hormone homeostasis and altered thyroid hormone-dependent brain gene expression in autism spectrum disorders. J. Physiol. Pharmacol. 65, 257–272.
    1. Kong S. W., Shimizu-Motohashi Y., Campbell M. G., Lee I. H., Collins C. D., Brewster S. J., et al. . (2013). Peripheral blood gene expression signature differentiates children with autism from unaffected siblings. Neurogenetics 14, 143–152. 10.1007/s10048-013-0363-z
    1. Kuwano Y., Kamio Y., Kawai T., Katsuura S., Inada N., Takaki A., et al. . (2011). Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS ONE 6:e24723. 10.1371/journal.pone.0024723
    1. Lainhart J. E., Bigler E. D., Bocian M., Coon H., Dinh E., Dawson G., et al. . (2006). Head circumference and height in autism: a study by the Collaborative Program of Excellence in Autism. Am. J. Med. Genet. A 140, 2257–2274. 10.1002/ajmg.a.31465
    1. Lord C., Rutter M., Le Couteur A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685. 10.1007/BF02172145
    1. Maekawa M., Yamada K., Toyoshima M., Ohnishi T., Iwayama Y., Shimamoto C., et al. . (2015). Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biol. Psychiatry 78, 116–125. 10.1016/j.biopsych.2014.07.025
    1. Mahfouz A., Ziats M. N., Rennert O. M., Lelieveldt B. P., Reinders M. J. (2015). Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome. J. Mol. Neurosci. 57, 580–594. 10.1007/s12031-015-0641-3
    1. Maximo J. O., Cadena E. J., Kana R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychol. Rev. 24, 16–31. 10.1007/s11065-014-9250-0
    1. Nishimura Y., Martin C. L., Vazquez-Lopez A., Spence S. J., Alvarez-Retuerto A. I., Sigman M., et al. . (2007). Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698. 10.1093/hmg/ddm116
    1. Ozonoff S., Young G. S., Carter A., Messinger D., Yirmiya N., Zwaigenbaum L., et al. . (2011). Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128, e488–e495. 10.1542/peds.2010-2825
    1. Peñagarikano O., Geschwind D. H. (2012). What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med. 18, 156–163. 10.1016/j.molmed.2012.01.003
    1. Pramparo T., Pierce K., Lombardo M. V., Carter Barnes C., Marinero S., Ahrens-Barbeau C., et al. . (2015). Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practices. JAMA Psychiatry 72, 386–394. 10.1001/jamapsychiatry.2014.3008
    1. Prandini P., Zusi C., Malerba G., Itan Pignatti P. F., Trabetti E. (2014). Analysis of RBFOX1 gene expression in lymphoblastoid cell lines of Italian discordant autism spectrum disorders sib-pairs. Mol. Cell. Probes 28, 242–245. 10.1016/j.mcp.2014.05.001
    1. Sandin S., Reichenberg A. (2014). Recurrence rates in autism spectrum disorders–reply. JAMA 312, 1155 10.1001/jama.2014.9847
    1. Segura M., Pedreno C., Obiols J., Taurines R., Pamias M., Grunblatt E., et al. . (2015). Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder. Neurogenetics 16, 123–131. 10.1007/s10048-014-0434-9
    1. Stamova B., Green P. G., Tian Y., Hertz-Picciotto I., Pessah I. N., Hansen R., et al. . (2011). Correlations between gene expression and mercury levels in blood of boys with and without autism. Neurotox. Res. 19, 31–48. 10.1007/s12640-009-9137-7
    1. Talebizadeh Z., Aldenderfer R., Wen Chen X. (2014). A proof-of-concept study: exon-level expression profiling and alternative splicing in autism using lymphoblastoid cell lines. Psychiatr. Genet. 24, 1–9. 10.1097/YPG.0b013e3283635526
    1. Taurines R., Grünblatt E., Schecklmann M., Schwenck C., Albantakis L., Reefschlager L., et al. . (2011). Altered mRNA expression of monoaminergic candidate genes in the blood of children with attention deficit hyperactivity disorder and autism spectrum disorder. World J. Biol. Psychiatry 12 (Suppl. 1), 104–108. 10.3109/15622975.2011.600297
    1. Tian Y., Green P. G., Stamova B., Hertz-Picciotto I., Pessah I. N., Hansen R., et al. . (2011). Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotox. Res. 19, 1–13. 10.1007/s12640-009-9126-x
    1. Voineagu I., Eapen V. (2013). Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front. Hum. Neurosci. 7:738. 10.3389/fnhum.2013.00738
    1. Walker S. J., Fortunato J., Gonzalez L. G., Krigsman A. (2013). Identification of unique gene expression profile in children with regressive autism spectrum disorder (ASD) and ileocolitis. PLoS ONE 8:e58058. 10.1371/journal.pone.0058058
    1. Wang K., Zhang H., Ma D., Bucan M., Glessner J. T., Abrahams B. S., et al. . (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533. 10.1038/nature07999
    1. Wen Y., Alshikho M. J., Herbert M. R. (2016). Pathway network analyses for Autism Reveal Multisystem Involvement, major overlaps with other diseases and convergence upon MAPK and Calcium Signaling. PLoS ONE 11:e0153329. 10.1371/journal.pone.0153329
    1. Williams B. L., Hornig M., Buie T., Bauman M. L., Cho Paik M., Wick I., et al. . (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 6:e24585. 10.1371/journal.pone.0024585
    1. Yasuda Y., Hashimoto R., Yamamori H., Ohi K., Fukumoto M., Umeda-Yano S., et al. . (2011). Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder. Mol. Autism 2:9. 10.1186/2040-2392-2-9
    1. Yuen R. K., Thiruvahindrapuram B., Merico D., Walker S., Tammimies K., Hoang N., et al. . (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 21, 185–191. 10.1038/nm.3792
    1. Zhubi A., Chen Y., Dong E., Cook E. H., Guidotti A., Grayson D. R. (2014). Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl. Psychiatry 4:e349. 10.1038/tp.2013.123
    1. Ziats M. N., Rennert O. M. (2013). Sex-biased gene expression in the developing brain: implications for autism spectrum disorders. Mol. Autism 4:10. 10.1186/2040-2392-4-10

Source: PubMed

3
S'abonner