Contingent negative variation as a dopaminergic biomarker: evidence from dose-related effects of methylphenidate

Anke M W Linssen, Eric F P M Vuurman, Anke Sambeth, Stephane Nave, Will Spooren, Gabriel Vargas, Luca Santarelli, Wim J Riedel, Anke M W Linssen, Eric F P M Vuurman, Anke Sambeth, Stephane Nave, Will Spooren, Gabriel Vargas, Luca Santarelli, Wim J Riedel

Abstract

Rationale: The basal ganglia play an important role in motor control, which is dependent on dopaminergic input. Preparation of a motor response has been associated with dopamine release in the basal ganglia, and response readiness may therefore serve as a pharmacodynamic marker of dopamine activity.

Methods: We measured response readiness using the amplitude of the contingent negative variation (CNV), a slow negative shift in the electroencephalogram. The CNV is evoked in a paradigm in which a warning stimulus (S1) signals the occurrence of the imperative stimulus (S2) 4 s later, to which the participant has to respond. CNV was assessed in healthy volunteers after administration of placebo or 10, 20 or 40 mg of methylphenidate, a catecholamine re-uptake blocker which primarily enhances the synaptic concentration of dopamine and to a lesser extent also noradrenaline. In addition, participants filled out two visual analogue scales measuring subjective ratings of mood and alertness: Profile of Mood States and Bond and Lader.

Results: Methylphenidate dose dependently increased CNV amplitude and decreased reaction times. Furthermore, participants reported improved mood, feeling more alert, vigorous and content and less angry and tired after methylphenidate.

Conclusions: These results indicate that dopamine availability increases response readiness as measured by the CNV paradigm. The CNV appears to be a good candidate biomarker for assessing changes in dopaminergic function by treatments that either directly or indirectly target the dopaminergic system.

Figures

Fig. 1
Fig. 1
Grand average ERPs showing a clear CNV wave during the stoplight (a) and lines 2 (b) response preparation tasks. The ERPs depicted were recorded at Cz, at t240 relative to dosing
Fig. 2
Fig. 2
Mean difference CNV amplitudes and reaction times relative to morning baseline at t30, 60, 120, 180, 240 and 300 min relative to dosing in the stoplight (amplitudes at Cz, a; reaction times, c) and lines 2 (amplitudes at Cz, b; reaction times, d) response preparation tasks. Error bars are only shown for PLA (placebo) and M40 (methylphenidate, 40 mg)

References

    1. Amabile G, Fattapposta F, Pozzessere G, et al. Parkinson disease: electrophysiological (CNV) analysis related to pharmacological treatment. Electroencephalogr Clin Neurophysiol. 1986;64(6):521–524. doi: 10.1016/0013-4694(86)90189-6.
    1. Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct. 2005;1(1):2. doi: 10.1186/1744-9081-1-2.
    1. Ashton H, Rawlins MD. Central nervous system depressant actions of clonidine and UK-14,304: partial dissociation of EEG and behavioural effects. Br J Clin Pharmacol. 1978;5(2):135–140.
    1. Ashton H, Millman JE, Telford R, et al. A comparison of some physiological and psychological effects of propranolol and diazepam in normal subjects. Br J Clin Pharmacol. 1976;3:551–559.
    1. Ashton H, Marsh VR, Millman JE, et al. Biphasic dose-related responses of the CNV (contingent negative variation) to I.V. nicotine in man. Br J Clin Pharmacol. 1980;10(6):579–589.
    1. Bares M, Rektor I. Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clin Neurophysiol. 2001;112(11):2022–2030. doi: 10.1016/S1388-2457(01)00671-X.
    1. Bares M, Rektor I, Kanovsky P, et al. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm. Clin Neurophysiol. 2003;114(12):2447–2460. doi: 10.1016/S1388-2457(03)00250-5.
    1. Ben-Jonathan N. Dopamine: a prolactin-inhibiting hormone. Endocr Rev. 1985;6(4):564–589. doi: 10.1210/edrv-6-4-564.
    1. Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol. 1974;47:211–218. doi: 10.1111/j.2044-8341.1974.tb02285.x.
    1. Brunia CH. Movement and stimulus preceding negativity. Biol Psychol. 1988;26(1–3):165–178. doi: 10.1016/0301-0511(88)90018-X.
    1. Brunia CH, van Boxtel GJ. Wait and see. Int J Psychophysiol. 2001;43(1):59–75. doi: 10.1016/S0167-8760(01)00179-9.
    1. Cooper NJ, Keage H, Hermens D, et al. The dose-dependent effect of methylphenidate on performance, cognition and psychophysiology. J Integr Neurosci. 2005;4(1):123–144. doi: 10.1142/S0219635205000744.
    1. Fan J, Kolster R, Ghajar J, et al. Response anticipation and response conflict: an event-related potential and functional magnetic resonance imaging study. J Neurosci. 2007;27(9):2272–2282. doi: 10.1523/JNEUROSCI.3470-06.2007.
    1. Hansenne M, Pitchot W, Pinto E, et al. Serotonergic-1a activity and contingent negative variation. Biol Psychol. 2000;52(3):259–265. doi: 10.1016/S0301-0511(99)00047-2.
    1. Hermens DF, Cooper NJ, Clark CR, et al. An integrative approach to determine the best behavioral and biological markers of methylphenidate. J Integr Neurosci. 2007;6(1):105–140. doi: 10.1142/S0219635207001441.
    1. Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30(5):188–193. doi: 10.1016/j.tins.2007.03.002.
    1. Klorman R, Bentsen E. Effects of warning-signal duration on the early and late components of the contingent negative variation. Biol Psychol. 1975;3(4):263–275. doi: 10.1016/0301-0511(75)90025-3.
    1. Kopell BS, Wittner WK, Lunde DT, et al. The effects of methamphetamine and secobarbital on the contingent negative variation amplitude. Psychopharmacologia. 1974;34(1):55–62. doi: 10.1007/BF00421220.
    1. Leonard, B. E., McCartan, D., White, J., & King, D. J. (2004). Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects. Hum Psychopharmacol 19(3):151–180
    1. Luthringer R, Rinaudo G, Toussaint M, et al. Electroencephalographic characterization of brain dopaminergic stimulation by apomorphine in healthy volunteers. Neuropsychobiology. 1999;39(1):49–56. doi: 10.1159/000026560.
    1. McNair D, Lorr M, Droppleman L. EdITS manual for the Profile of Mood States. San Diego: Educational and Industrial Testing Service; 1992.
    1. Mulder EJ, Linssen WH, de Geus EI. Reduced sensory anticipation in migraine. Psychophysiology. 2002;39(2):166–174. doi: 10.1111/1469-8986.3920166.
    1. Nagai Y, Critchley HD, Featherstone E, et al. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage. 2004;21(4):1232–1241. doi: 10.1016/j.neuroimage.2003.10.036.
    1. Nagai T, Takuma K, Kamei H, et al. Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem. 2007;14(3):117–125. doi: 10.1101/lm.461407.
    1. Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol. 2002;67(1):53–83. doi: 10.1016/S0301-0082(02)00011-4.
    1. Oishi M, Mochizuki Y, Du C, et al. Contingent negative variation and movement-related cortical potentials in parkinsonism. Electroencephalogr Clin Neurophysiol. 1995;95(5):346–349. doi: 10.1016/0013-4694(95)00084-C.
    1. Papart P, Ansseau M, Timsit-Berthier M. Influence of diazepam on contingent negative variation. Hum Psychopharmacol. 1997;12:95–98. doi: 10.1002/(SICI)1099-1077(199703/04)12:2<95::AID-HUP841>;2-3.
    1. Patrick KS, Straughn AB, Minhinnett RR, et al. Influence of ethanol and gender on methylphenidate pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2007;81(3):346–353. doi: 10.1038/sj.clpt.6100082.
    1. Rektor I, Kaiiovsky P, Bares M, et al. A SEEG study of ERP in motor and premotor cortices and in the basal ganglia. Clin Neurophysiol. 2003;114(3):463–471. doi: 10.1016/S1388-2457(02)00388-7.
    1. Rektor I, Bares M, Kanovsky P, et al. Cognitive potentials in the basal ganglia—frontocortical circuits. An intracerebral recording study. Exp Brain Res. 2004;158(3):289–301. doi: 10.1007/s00221-004-1901-6.
    1. Rockstroh B, Elbert T, Lutzenberger W, et al. Effects of the anticonvulsant benzodiazepine clonazepam on event-related brain potentials in humans. Electroencephalogr Clin Neurophysiol. 1991;78(2):142–149. doi: 10.1016/0013-4694(91)90114-J.
    1. Spencer TJ, Biederman J, Ciccone PE, et al. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry. 2006;163(3):387–395. doi: 10.1176/appi.ajp.163.3.387.
    1. Tecce JJ. Contingent negative variation (CNV) and psychological processes in man. Psychol Bull. 1972;77(2):73–108. doi: 10.1037/h0032177.
    1. Tecce JJ. Dopamine and CNV: studies of drugs, disease and nutrition. Electroencephalogr Clin Neurophysiol Suppl. 1991;42:153–164.
    1. Tecce JJ, Cole JO. Amphetamine effects in man: paradoxical drowsiness and lowered electrical brain activity (CNV) Science. 1974;185(149):451–453. doi: 10.1126/science.185.4149.451.
    1. Tecce JJ, Cole JO, Savignano-Bowman J. Chlorpromazine effects on brain activity (contingent negative variation) and reaction time in normal women. Psychopharmacologia. 1975;43(3):293–295. doi: 10.1007/BF00429268.
    1. van Boxtel GJ, Brunia CH. Motor and non-motor aspects of slow brain potentials. Biol Psychol. 1994;38(1):37–51. doi: 10.1016/0301-0511(94)90048-5.
    1. Volkow ND, Wang GJ, Gatley SJ, et al. Temporal relationships between the pharmacokinetics of methylphenidate in the human brain and its behavioral and cardiovascular effects. Psychopharmacology (Berl) 1996;123(1):26–33. doi: 10.1007/BF02246277.
    1. Volkow ND, Wang GJ, Fowler JS, et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry. 1998;155(10):1325–1331.
    1. Volkow ND, Wang GJ, Fowler JS, et al. Differences in regional brain metabolic responses between single and repeated doses of methylphenidate. Psychiatry Res. 1998;83(1):29–36. doi: 10.1016/S0925-4927(98)00025-0.
    1. Volkow ND, Fowler JS, Wang GJ, et al. Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol. 2002;12(6):557–566. doi: 10.1016/S0924-977X(02)00104-9.
    1. Volkow ND, Fowler JS, Wang GJ, et al. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS ONE. 2008;3(4):e2017. doi: 10.1371/journal.pone.0002017.
    1. Walter WG, Cooper R, Aldridge VJ, et al. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–384. doi: 10.1038/203380a0.

Source: PubMed

3
S'abonner