Update on the diagnosis and management of acute kidney injury

Ali Akcay, Kultigin Turkmen, DongWon Lee, Charles L Edelstein, Ali Akcay, Kultigin Turkmen, DongWon Lee, Charles L Edelstein

Abstract

Acute kidney injury (AKI) is an independent risk factor for morbidity and mortality. This review provides essential information for the diagnosis and management of AKI. Blood urea nitrogen and serum creatinine are used for the diagnosis of AKI. The review also focuses on recent studies on the diagnosis of AKI using the RIFLE (R-renal risk, I-injury, F-failure, L-loss of kidney function, E-end stage kidney disease) and Acute Kidney Injury Network criteria, and serum and urine AKI biomarkers. Dialysis is the only Food and Drug Administration-approved therapy for AKI. Recent studies on the dose of dialysis in AKI are reviewed.

Keywords: acute kidney injury; biomarkers; interleukin-18.

2010 Halvorson et al, publisher and licensee Dove Medical Press Ltd.

References

    1. Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–1605.
    1. Van Biesen W, Vanholder R, Lameire N. Defining acute renal failure: RIFLE and beyond. Clin J Am Soc Nephrol. 2006;1(6):1314–1319.
    1. Bellomo R, Kellum JA, Ronco C. Defining and classifying acute renal failure: from advocacy to consensus and validation of the RIFLE criteria. Intensive Care Med. 2007;33(3):409–413.
    1. Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology, and outcomes of acute renal failure. Clin J Am Soc Nephrol. 2008;3(3):844–861.
    1. Haase M, Bellomo R, Matalanis G, Calzavacca P, Dragun D, Haase-Fielitz A. A comparison of the RIFLE and Acute Kidney Injury Network classifications for cardiac surgery-associated acute kidney injury: a prospective cohort study. J Thorac Cardiovasc Surg. 2009;138(6):1370–1376.
    1. Stevens LA, Lafayette RA, Perrone RD, Levey AS. Laboratory evaluation of kidney function. In: Scrier RW, editor. Diseases of the Kidney and Urinary Tract. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
    1. Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27(6):928–937.
    1. Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817–1831.
    1. Chronopoulos A, Cruz DN, Ronco C. Hospital-acquired acute kidney injury in the elderly. Nat Rev Nephrol. 2010;6(3):141–149.
    1. Melnikov VY, Ecder T, Fantuzzi G, et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107(9):1145–1152.
    1. Melnikov VY, Faubel SG, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest. 2002;110(8):1083–1091.
    1. Parikh CR, Jani A, Mishra J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006;6(7):1639–1645.
    1. Parikh CR, Jani A, Melnikov VY, Faubel SG, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43:405–414.
    1. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the ICU. J Am Soc Nephrol. 2005;16:3046–3052.
    1. Washburn KK, Zapitelli M, Arikan AA, et al. Urinary interleukin-18 as an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant. 2008;23(2):566–572.
    1. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.
    1. Ling W, Zhaohui N, Ben H, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108(3):176–181.
    1. Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407–413.
    1. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–2543.
    1. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24(3):307–315.
    1. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–1238.
    1. Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–491.
    1. Zapitelli M, Washburn KK, Arikan AA, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11(4):R84.
    1. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–1303.
    1. Hirsch R, Dent C, Pfriem H, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22(12):2089–2095.
    1. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–292.
    1. Siew ED, Ware LB, Gebretsadik T, et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol. 2009;20(8):1823–1832.
    1. Cruz DN, de Cal M, Garzotto F, et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. 2010;36(3):444–451.
    1. Niemann CU, Walia A, Waldman J, et al. Acute kidney injury during liver transplantation as determined by neutrophil gelatinase-associated lipocalin. Liver Transpl. 2009;15(12):1852–1860.
    1. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, NGAL Meta-analysis Investigator Group Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–1024.
    1. Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–4142.
    1. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2):F517–F529.
    1. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–244.
    1. Van Timmeren MM, Vaidya VS, van Ree RM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation. 2007;84(12):1625–1630.
    1. Vaidya VS, Ford GM, Waikar SS, et al. A rapid urine test for early detection of kidney injury. Kidney Int. 2009;76(1):108–114.
    1. Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–882.
    1. Westhuyzen J. Cystatin C. A promising marker and predictor of impaired renal function. Ann Clin Lab Sci. 2006;36(4):387–394.
    1. Herget-Rosenthal S, Marggraf G, Husing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–1122.
    1. Koyner JL, Bennet MR, Worcester EM, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74(8):1059–1069.
    1. Artunc FH, Fischer IU, Risler T, Erley CM. Improved estimation of GFR by serum cystatin C in patients undergoing cardiac catheterization. Int J Cardiol. 2005;102(2):173–178.
    1. Orlando R, Mussap M, Plebani M, et al. Diagnostic value of plasma cystatin C as a glomerular filtration marker in decompensated liver cirrhosis. Clin Chem. 2002;48(6 Pt 1):850–858.
    1. Gerbes AL, Gulberg V, Bilzer M, Vogeser M. Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. Gut. 2002;50(1):106–110.
    1. Villa P, Jimenez M, Soriano MC, Manzanares J, Casasnovas P. Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care. 2005;9(2):R139–R143.
    1. Herrero-Morin JD, Malaga S, Fernandez N, et al. Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children. Crit Care. 2007;11(3):R59.
    1. Perianayagam MC, Seabra VF, Tighiouart H, Liangos O, Jaber BL. Serum cystatin C for prediction of dialysis requirement or death in acute kidney injury: a comparative study. Am J Kidney Dis. 2009;54(6):1025–1033.
    1. Kanbay M, Kesapoglu B, Perazella MA. Acute tubular necrosis and prerenal acute kidney injury: utility of urine microscopy in their evaluation-a systematic review. Int Urol Nephrol. 2009 Nov 17; [Epub ahead of print]
    1. Perazella MA, Coca SG, Hall IE, Iyanam U, Koraishy M, Parikh CR. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol. 2010;5(3):402–408.
    1. Miller TR, Anderson RJ, Linas SL, et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med. 1978;89(1):47–50.
    1. Handa SP, Morrin PA. Diagnostic indices in acute renal failure. Can Med Assoc J. 1967;96(2):78–82.
    1. Vertel RM, Knochel JP. Nonoliguric acute renal failure. JAMA. 1967;200(7):598–602.
    1. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units -causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study. Crit Care Med. 1996;24(2):192–198.
    1. Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. Kidney Int Suppl. 1998;66:S16–S24.
    1. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351(2):159–169.
    1. Sheikh-Hamad D, Timmins K, Jalali Z. Cisplatin-induced renal toxicity: possible reversal by N-acetylcysteine treatment. J Am Soc Nephrol. 1997;8(10):1640–1644.
    1. Dentino M, Luft FC, Yum MN, Williams SD, Einhorn LH. Long term effect of cis-diamminedichloride platinum (CDDP) on renal function and structure in man. Cancer. 1978;41(4):1274–1281.
    1. Kanbay M, Covic A, Coca SG, Turgut F, Akcay A, Parikh CR. Sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of 17 randomized trials. Int Urol Nephrol. 2009;41(3):617–627.
    1. Heyman SN, Reichman J, Brezis M. Pathophysiology of radio-contrast nephropathy: a role for medullary hypoxia. Invest Radiol. 1999;34(11):685–691.
    1. Kohan DE. Endothelins in the normal and diseased kidney. Am J Kidney Dis. 1997;29(1):2–26.
    1. Solomon R. Radiocontrast-induced nephropathy. Semin Nephrol. 1998;18(5):551–557.
    1. Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Nephrotoxic risks of renal angiography: contrast media-associated nephrotoxicity and atheroembolism – a critical review. Am J Kidney Dis. 1994;24(4):713–727.
    1. Tepel M, van der GM, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343(3):180–184.
    1. Riley DJ, Weir M, Bakris GL. Renal adaptation to the failing heart. Avoiding a ‘therapeutic misadventure’. Postgrad Med. 1994;95(8):153–156.
    1. Tan SY, Shapiro R, Kish MA. Reversible acute renal failure induced by indomethacin. JAMA. 1979;241(25):2732–2733.
    1. Galler M, Folkert VW, Schlondorff D. Reversible acute renal insufficiency and hyperkalemia following indomethacin therapy. JAMA. 1981;246(2):154–155.
    1. Baldwin DS, Levine BB, McCluskey RT, Gallo GR. Renal failure and interstitial nephritis due to penicillin and methicillin. N Engl J Med. 1968;279(23):1245–1252.
    1. Rossert J. Drug-induced acute interstitial nephritis. Kidney Int. 2001;60(2):804–817.
    1. Taber SS, Pasko DA. The epidemiology of drug-induced disorders: the kidney. Expert Opin Drug Saf. 2008;7(6):679–690.
    1. Corwin HL, Schreiber MJ, Fang LS. Low fractional excretion of sodium. Occurrence with hemoglobinuric- and myoglobinuric-induced acute renal failure. Arch Int Med. 1984;144(5):981–982.
    1. Kelton J, Kelley WN, Holmes EW. A rapid method for the diagnosis of acute uric acid nephropathy. Arch Intern Med. 1978;138(4):612–615.
    1. Markowitz GS. Oral sodium phosphate bowel purgatives and acute phosphate nephropathy. In: De Broe ME, Porter GA, editors. Clinical Nephrotoxins-Renal Injury from Drugs and Chemicals. 3rd ed. New York: Springer; 2008.
    1. Finfer S, Bellomo R, Boyce N, Myburgh J, Norton R, SAFE Study Investigators A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–2256.
    1. Anderson RJ, Linas SL, Berns AS, et al. Nonoliguric acute renal failure. N Engl J Med. 1977;296:1134–1138.
    1. Karajala V, Mansour W, Kellum JA. Diuretics in acute kidney injury. Minerva Anestesiol. 2009;75(5):251–257.
    1. Mehta RL, Pascual MT, Soroko S, Chertow GM, PICARD Study Group Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–2553.
    1. Feinstein EI, Kopple JD, Silberman H, Massry SG. Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure. Kidney Int Suppl. 1983;16:S319–S323.
    1. Bellomo R, Seacombe J, Daskalakis M, et al. A prospective comparative study of moderate versus high protein intake for critically ill patients with acute renal failure. Ren Fail. 1997;19(1):111–120.
    1. Sponsel H, Conger JD. Is parenteral nutrition therapy of value in acute renal failure patients? Am J Kidney Dis. 1995;25(1):96–102.
    1. Waikar SS, Curhan GC, Wald R, McCarthy EP, Chertow GM. Declining mortality in patients with acute renal failure, 1988 to 2002. J Am Soc Nephrol. 2006;17(4):1143–1150.
    1. Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006;2(7):364–377.
    1. Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12(12):2592–2596.
    1. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):97–104.
    1. Allgren RL, Marbury TC, Rahman SN, et al. Anaritide in acute tubular necrosis. N Engl J Med. 1997;336(12):828–834.
    1. Lewis J, Salem MM, Chertow GM, et al. Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis. 2000;36(4):767–774.
    1. Hirschberg R, Kopple J, Lipsett P, et al. Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int. 1999;55(6):2423–2432.
    1. Kellum JA. Prophylactic fenoldopam for renal protection? No, thank you, not for me – not yet at least. Critical Care Med. 2005;33(11):2681–2683.
    1. Gettings LG, Reynolds HN, Scalea T. Outcome in post-traumatic acute renal failure when continuous renal replacement therapy is applied early vs late. Intensive Care Med. 1999;25(8):805–813.
    1. Elahi MM, Lim MY, Joseph RN, Dhannapuneni RR, Spyt TJ. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardiothorac Surg. 2004;26(5):1027–1031.
    1. Demirkilic U, Kuralay E, Yenicesu M, et al. Timing of replacement therapy for acute renal failure after cardiac surgery. J Card Surg. 2004;19(1):17–20.
    1. Liu KD, Himmelfarb J, Paganini E, et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2006;1(5):915–919.
    1. Swartz RD, Messana JM, Orzol S, Port FK. Comparing continuous hemofiltration with hemodialysis in patients with severe acute renal failure. Am J Kidney Dis. 1999;34(3):424–432.
    1. Rialp G, Roglan A, Betbese AJ, et al. Prognostic indexes and mortality in critically ill patients with acute renal failure treated with different dialytic techniques. Ren Fail. 1996;18(4):667–675.
    1. Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60(3):1154–1163.
    1. Lins RL, Elseviers MM, van der Neipen P, et al. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol Dial Transplant. 2009;24(2):512–518.
    1. Ghahramani N, Shadrou S, Hollenbeak C. A systematic review of continuous renal replacement therapy and intermittent hemodialysis in management of patients with acute renal failure. Nephrology. 2008;13(7):570–578.
    1. Marshall MR, Golper TA, Shaver MJ, Alam MG, Chatoth DK. Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int. 2001;60(2):777–785.
    1. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous hemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet. 2000;356(9223):26–30.
    1. Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med. 2002;346(5):305–310.
    1. Saudan P, Niederberger M, De Seigneux S, et al. Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int. 2006;70(7):1312–1317.
    1. VA/NIH Acute Renal Failure Trial Network. Palevsky PM, Zhang JH, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.
    1. RENAL Replacement Therapy Study Investigators. Bellomo R, Cass A, et al. Intensity of continuos renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–1638.
    1. Palevsky PM. Renal support in acute kidney injury – how much is enough? N Engl J Med. 2009;361(17):1699–1701.

Source: PubMed

3
S'abonner