Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept

Sara Gil-Perotin, Paula Ramirez, Veronica Marti, Jose Miguel Sahuquillo, Eva Gonzalez, Isabel Calleja, Rosario Menendez, Juan Bonastre, Sara Gil-Perotin, Paula Ramirez, Veronica Marti, Jose Miguel Sahuquillo, Eva Gonzalez, Isabel Calleja, Rosario Menendez, Juan Bonastre

Abstract

Introduction: Biofilm in endotracheal tubes (ETT) of ventilated patients has been suggested to play a role in the development of ventilator-associated pneumonia (VAP). Our purpose was to analyze the formation of ETT biofilm and its implication in the response and relapse of VAP.

Methods: We performed a prospective, observational study in a medical intensive care unit. Patients mechanically ventilated for more than 24 hours were consecutively included. We obtained surveillance endotracheal aspirates (ETA) twice weekly and, at extubation, ETTs were processed for microbiological assessment and scanning electron microscopy.

Results: Eighty-seven percent of the patients were colonized based on ETA cultures. Biofilm was found in 95% of the ETTs. In 56% of the cases, the same microorganism grew in ETA and biofilm. In both samples the most frequent bacteria isolated were Acinetobacter baumannii and Pseudomonas aeruginosa. Nineteen percent of the patients developed VAP (N = 14), and etiology was predicted by ETA in 100% of the cases. Despite appropriate antibiotic treatment, bacteria involved in VAP were found in biofilm (50%). In this situation, microbial persistence and impaired response to treatment (treatment failure and relapse) were more frequent (100% vs 29%, P = 0.021; 57% vs 14%, P = 0.133).

Conclusions: Airway bacterial colonization and biofilm formation on ETTs are early and frequent events in ventilated patients. There is microbiological continuity between airway colonization, biofilm formation and VAP development. Biofilm stands as a pathogenic mechanism for microbial persistence, and impaired response to treatment in VAP.

Figures

Figure 1
Figure 1
Scanning electron microscopy micrographs of biofilm in the endotracheal tubes. Biofilm at low magnification is composed of a matrix that attaches on the surface of the ETT. Scale bar: 2 μm.
Figure 2
Figure 2
Identification of microorganisms on the surface of biofilm. In certain cases we could identify microorganisms immersed in the biofilm matrix. A) Cocci, scale bar: 2 μm, B-D) Bacilli, scale bar: 4 μm, 2 μm and 5 μm, respectively, and E) yeast. Scale bar: 10 μm.
Figure 3
Figure 3
Relationship between biofilm, microbial persistence and treatment failure. Bar graph representative of the percentage of cases in which there was (gray) or not (black) bacterial survival on ETT biofilm despite appropriate treatment. Microbial persistence in respiratory samples and treatment failure were more frequent when bacterial growth was documented in ETT.

References

    1. Craven DE, Steger KA. Epidemiology of nosocomial pneumonia. New perspectives on an old disease. Chest. 1995;108:1S–16S. doi: 10.1378/chest.108.2_Supplement.1S.
    1. Rello J, Sonora R, Jubert P, Artigas A, Rue M, Valles J. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med. 1996;154:111–115.
    1. Pneumatikos IA, Dragoumanis CK, Bouros DE. Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology. 2009;110:673–680. doi: 10.1097/ALN.0b013e31819868e0.
    1. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11:217–221. doi: 10.1016/S0924-8579(99)00018-7. discussion 237-239.
    1. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–890.
    1. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238:86–95. doi: 10.1038/scientificamerican0178-86.
    1. Jones HC, Roth IL, Sanders WM. Electron microscopic study of a slime layer. J Bacteriol. 1969;99:316–325.
    1. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–193. doi: 10.1128/CMR.15.2.167-193.2002.
    1. Raad I. Intravascular-catheter-related infections. Lancet. 1998;351:893–898. doi: 10.1016/S0140-6736(97)10006-X.
    1. Nickel JC, Costerton JW, McLean RJ, Olson M. Bacterial biofilms: influence on the pathogenesis, diagnosis and treatment of urinary tract infections. J Antimicrob Chemother. 1994;33(Suppl A):31–41.
    1. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–281. doi: 10.3201/eid0702.010226.
    1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318.
    1. Donlan RM. New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res. 2005. pp. 12–19.
    1. Khardori N, Yassien M. Biofilms in device-related infections. J Ind Microbiol. 1995;15:141–147. doi: 10.1007/BF01569817.
    1. Donlan RM. Role of biofilms in antimicrobial resistance. Asaio J. 2000;46:S47–52. doi: 10.1097/00002480-200011000-00037.
    1. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–138. doi: 10.1016/S0140-6736(01)05321-1.
    1. Larson E. Bacterial colonization of tracheal tubes of patients in a surgical intensive care unit. Nurs Res. 1970;19:122–128.
    1. Inglis TJ, Millar MR, Jones JG, Robinson DA. Tracheal tube biofilm as a source of bacterial colonization of the lung. J Clin Microbiol. 1989;27:2014–2018.
    1. Feldman C, Kassel M, Cantrell J, Kaka S, Morar R, Goolam Mahomed A, Philips JI. The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur Respir J. 1999;13:546–551. doi: 10.1183/09031936.99.13354699.
    1. Zur KB, Mandell DL, Gordon RE, Holzman I, Rothschild MA. Electron microscopic analysis of biofilm on endotracheal tubes removed from intubated neonates. Otolaryngol Head Neck Surg. 2004;130:407–414. doi: 10.1016/j.otohns.2004.01.006.
    1. Sottile FD, Marrie TJ, Prough DS, Hobgood CD, Gower DJ, Webb LX, Costerton JW, Gristina AG. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med. 1986;14:265–270. doi: 10.1097/00003246-198604000-00001.
    1. van Saene HK, Damjanovic V, Williets T, Mostafa SM, Fox MA, Petros AJ. Pathogenesis of ventilator-associated pneumonia: is the contribution of biofilm clinically significant? J Hosp Infect. 1998;38:231–235. doi: 10.1016/S0195-6701(98)90279-1.
    1. Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med. 1999;25:1072–1076. doi: 10.1007/s001340051014.
    1. Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R. NASCENT Investigation Group. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300:805–813. doi: 10.1001/jama.300.7.805.
    1. Rello J, Mariscal D, March F, Jubert P, Sanchez F, Valles J, Coll P. Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: relapse or reinfection? Am J Respir Crit Care Med. 1998;157:912–916.
    1. Bauer TT, Torres A, Ferrer R, Heyer CM, Schultze-Werninghaus G, Rasche K. Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis. 2002;57:84–87.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Rello J, Gallego M, Mariscal D, Sonora R, Valles J. The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med. 1997;15:196–200.
    1. Torres A, Martos A, Puig de la Bellacasa J, Ferrer M, el-Ebiary M, Gonzalez J, Gene A, Rodriguez-Roisin R. Specificity of endotracheal aspiration, protected specimen brush, and bronchoalveolar lavage in mechanically ventilated patients. Am Rev Respir Dis. 1993;147:952–957.
    1. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.
    1. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903.
    1. Langer M, Cigada M, Mandelli M, Mosconi P, Tognoni G. Early onset pneumonia: a multicenter study in intensive care units. Intensive Care Med. 1987;13:342–346.
    1. Rello J, Diaz E. Pneumonia in the intensive care unit. Crit Care Med. 2003;31:2544–2551. doi: 10.1097/01.CCM.0000089928.84326.D2.
    1. Luna CM, Aruj P, Niederman MS, Garzon J, Violi D, Prignoni A, Rios F, Baquero S, Gando S. Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. Eur Respir J. 2006;27:158–164. doi: 10.1183/09031936.06.00049105.
    1. Visscher S, Schurink CA, Melsen WG, Lucas PJ, Bonten MJ. Effects of systemic antibiotic therapy on bacterial persistence in the respiratory tract of mechanically ventilated patients. Intensive Care Med. 2008;34:692–699. doi: 10.1007/s00134-007-0984-5.
    1. Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S. PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–2598. doi: 10.1001/jama.290.19.2588.
    1. Ioanas M, Ferrer M, Cavalcanti M, Ferrer R, Ewig S, Filella X, de la Bellacasa JP, Torres A. Causes and predictors of nonresponse to treatment of intensive care unit-acquired pneumonia. Crit Care Med. 2004;32:938–945. doi: 10.1097/01.CCM.0000114580.98396.91.
    1. Silver DR, Cohen IL, Weinberg PF. Recurrent Pseudomonas aeruginosa pneumonia in an intensive care unit. Chest. 1992;101:194–198. doi: 10.1378/chest.101.1.194.
    1. Berra L, De Marchi L, Yu ZX, Laquerriere P, Baccarelli A, Kolobow T. Endotracheal tubes coated with antiseptics decrease bacterial colonization of the ventilator circuits, lungs, and endotracheal tube. Anesthesiology. 2004;100:1446–1456. doi: 10.1097/00000542-200406000-00017.
    1. Adair CG, Gorman SP, O'Neill FB, McClurg B, Goldsmith EC, Webb CH. Selective decontamination of the digestive tract (SDD) does not prevent the formation of microbial biofilms on endotracheal tubes. J Antimicrob Chemother. 1993;31:689–697. doi: 10.1093/jac/31.5.689.
    1. Adair CG, Gorman SP, Byers LM, Jones DS, Feron B, Crowe M, Webb HC, McCarthy GJ, Milligan KR. Eradication of endotracheal tube biofilm by nebulised gentamicin. Intensive Care Med. 2002;28:426–431. doi: 10.1007/s00134-002-1223-8.
    1. Ewig S, Torres A, El-Ebiary M, Fabregas N, Hernandez C, Gonzalez J, Nicolas JM, Soto L. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med. 1999;159:188–198.
    1. Baena-Monroy T, Moreno-Maldonado V, Franco-Martinez F, Aldape-Barrios B, Quindos G, Sanchez-Vargas LO. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med Oral Patol Oral Cir Bucal. 2005;10(Suppl 1):E27–39.
    1. Sirvent JM, Torres A, Vidaur L, Armengol J, de Batlle J, Bonet A. Tracheal colonisation within 24 h of intubation in patients with head trauma: risk factor for developing early-onset ventilator-associated pneumonia. Intensive Care Med. 2000;26:1369–1372. doi: 10.1007/s001340000611.
    1. Bonten MJ, Kollef MH, Hall JB. Risk factors for ventilator-associated pneumonia: from epidemiology to patient management. Clin Infect Dis. 2004;38:1141–1149. doi: 10.1086/383039.
    1. Malacarne P, Corini M, Maremmani P, Viaggi B, Verdigi S. Diagnostic characteristics of routine surveillance cultures of endotracheal aspirate samples in cases of late-onset ventilator-associated pneumonia due to Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2007;28:867–869. doi: 10.1086/518728.
    1. Yang K, Zhuo H, Guglielmo BJ, Wiener-Kronish J. Multidrug-resistant Pseudomonas aeruginosa ventilator-associated pneumonia: the role of endotracheal aspirate surveillance cultures. Ann Pharmacother. 2009;43:28–35. doi: 10.1345/aph.1L210.
    1. Depuydt P, Benoit D, Vogelaers D, Decruyenaere J, Vandijck D, Claeys G, Verschraegen G, Blot S. Systematic surveillance cultures as a tool to predict involvement of multidrug antibiotic resistant bacteria in ventilator-associated pneumonia. Intensive Care Med. 2008;34:675–682. doi: 10.1007/s00134-007-0953-z.
    1. Jung B, Sebbane M, Chanques G, Courouble P, Verzilli D, Perrigault PF, Jean-Pierre H, Eledjam JJ, Jaber S. Previous endotracheal aspirate allows guiding the initial treatment of ventilator-associated pneumonia. Intensive Care Med. 2009;35:101–107. doi: 10.1007/s00134-008-1248-8.
    1. Michel F, Franceschini B, Berger P, Arnal JM, Gainnier M, Sainty JM, Papazian L. Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest. 2005;127:589–597. doi: 10.1378/chest.127.2.589.
    1. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45. doi: 10.1086/599376.
    1. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;355:2619–2630.
    1. Aydogdu M, Gursel G, Hizel K, Ozis TN. Comparison of the serial surveillance with quantitative and non-quantitative tracheal aspirate in predicting ventilator-associated pneumonia etiology in patients receiving antibiotic therapy. Minerva Anestesiol. 2010;76:600–608.
    1. Niederman MS. The argument against using quantitative cultures in clinical trials and for the management of ventilator-associated pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S93–99.

Source: PubMed

3
S'abonner