Association of Generalized Anxiety Disorder With Autonomic Hypersensitivity and Blunted Ventromedial Prefrontal Cortex Activity During Peripheral Adrenergic Stimulation: A Randomized Clinical Trial

Adam R Teed, Justin S Feinstein, Maria Puhl, Rachel C Lapidus, Valerie Upshaw, Rayus T Kuplicki, Jerzy Bodurka, Olujimi A Ajijola, Walter H Kaye, Wesley K Thompson, Martin P Paulus, Sahib S Khalsa, Adam R Teed, Justin S Feinstein, Maria Puhl, Rachel C Lapidus, Valerie Upshaw, Rayus T Kuplicki, Jerzy Bodurka, Olujimi A Ajijola, Walter H Kaye, Wesley K Thompson, Martin P Paulus, Sahib S Khalsa

Abstract

Importance: β-Adrenergic stimulation elicits heart palpitations and dyspnea, key features of acute anxiety and sympathetic arousal, yet no neuroimaging studies have examined how the pharmacologic modulation of interoceptive signals is associated with fear-related neurocircuitry in individuals with generalized anxiety disorder (GAD).

Objective: To examine the neural circuitry underlying autonomic arousal induced via isoproterenol, a rapidly acting, peripheral β-adrenergic agonist akin to adrenaline.

Design, setting, and participants: This crossover randomized clinical trial of 58 women with artifact-free data was conducted from January 1, 2017, to November 31, 2019, at the Laureate Institute for Brain Research in Tulsa, Oklahoma.

Exposures: Functional magnetic resonance imaging was used to assess neural responses during randomized intravenous bolus infusions of isoproterenol (0.5 and 2.0 μg) and saline, each administered twice in a double-blind fashion.

Main outcomes and measures: Blood oxygen level-dependent responses across the whole brain during isoproterenol administration in patients with GAD vs healthy comparators. Cardiac and respiratory responses, as well as interoceptive awareness and anxiety, were also measured during the infusion protocol.

Results: Of the 58 female study participants, 29 had GAD (mean [SD] age, 26.9 [6.8] years) and 29 were matched healthy comparators (mean [SD] age, 24.4 [5.0] years). During the 0.5-μg dose of isoproterenol, the GAD group exhibited higher heart rate responses (b = 5.34; 95% CI, 2.06-8.61; P = .002), higher intensity ratings of cardiorespiratory sensations (b = 8.38; 95% CI, 2.05-14.71; P = .01), higher levels of self-reported anxiety (b = 1.04; 95% CI, 0.33-1.76; P = .005), and significant hypoactivation in the ventromedial prefrontal cortex (vmPFC) that was evident throughout peak response (Cohen d = 1.55; P < .001) and early recovery (Cohen d = 1.52; P < .001) periods. Correlational analysis of physiological and subjective indexes and percentage of signal change extracted during the 0.5-μg dose revealed that vmPFC hypoactivation was inversely correlated with heart rate (r56 = -0.51, adjusted P = .001) and retrospective intensity of both heartbeat (r56 = -0.50, adjusted P = .002) and breathing (r56 = -0.44, adjusted P = .01) sensations. Ventromedial prefrontal cortex hypoactivation correlated inversely with continuous dial ratings at a trend level (r56 = -0.38, adjusted P = .051), whereas anxiety (r56 = -0.28, adjusted P = .27) and chronotropic dose 25 (r56 = -0.14, adjusted P = .72) showed no such association.

Conclusions and relevance: In this crossover randomized clinical trial, women with GAD exhibited autonomic hypersensitivity during low levels of adrenergic stimulation characterized by elevated heart rate, heightened interoceptive awareness, increased anxiety, and a blunted neural response localized to the vmPFC. These findings support the notion that autonomic hyperarousal may be associated with regulatory dysfunctions in the vmPFC, which could serve as a treatment target to help patients with GAD more appropriately appraise and regulate signals of sympathetic arousal.

Trial registration: ClinicalTrials.gov Identifier: NCT02615119.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Ajijola reported having ownership in NeuCures outside the submitted work. Dr Kuplicki reported receiving grants from the National Institute of General Medical Sciences during the conduct of the study. Dr Paulus reported receiving general institutional support from the William K. Warren Foundation and grants from the National Institute of General Medical Sciences during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.. CONSORT Diagram
Figure 1.. CONSORT Diagram
BMI indicates body mass index; EEG, electroencephalography; GAD, generalized anxiety disorder; HC, healthy comparator; and MRI, magnetic resonance imaging.
Figure 2.. Physiological, Perceptual, and Affective Responses…
Figure 2.. Physiological, Perceptual, and Affective Responses During Isoproterenol and Saline Infusions
Box plots are shown representing median (thick line) and 25th and 75th quartiles (thin lines) with whiskers extending to 1.5 × the IQR. Chronotropic dose 25 (CD25) values reflect the dose required to elevate the heart rate by 25/min. GAD indicates general anxiety disorder; HCs, healthy comparators.
Figure 3.. Group Differences in Ventromedial Prefrontal…
Figure 3.. Group Differences in Ventromedial Prefrontal Cortex Response From Whole-Brain Analyses
A, Significant group activation differences during the peak response period were only found during administration of the 0.5-μg dose at a voxelwise threshold of P < .001 and a 95% false-positive rate cluster correction. B, Significant group activation differences during the early recovery period were only found during administration of the 0.5-μg dose. Right insets show the percentage of signal change above baseline for each dose. C, Mean activitation time course for the significant ventromedial prefrontal cortex (vmPFC) region (blue cluster from peak period) identified during the 0.5-μg infusion. Shaded lines indicate SEMs. BOLD indicates blood oxygenation level–dependent response; GAD, generalized anxiety disorder; and HC, healthy comparator.
Figure 4.. Insular Cortex Responses During Isoproterenol…
Figure 4.. Insular Cortex Responses During Isoproterenol and Saline Infusion
A, Increased activity localized within bilateral clusters of ventral insular cortex was observed across all participants via voxelwise, whole-brain analysis during the peak effect epoch of the 2.0-μg isoproterenol infusion. B, No significant differences were found between groups within the ventral insular cortex clusters at each dose. The 2.0-μg infusion elicited a significantly larger insula response than the saline and the 0.5-μg infusion. The clusters identified at 2.0 μg were used as masks for extracting signal change for each dose and the saline infusions based on prior studies, in which the 2.0-μg dose proved to be sensitive at eliciting insula activity in healthy individuals. C, Cohen d effect sizes when comparing each isoproterenol dose with saline. Error bars indicate SEMs. GAD indicates generalized anxiety disorder; HC, healthy comparator.

References

    1. Kessler RC, Wang PS. The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health. 2008;29:115-129. doi:10.1146/annurev.publhealth.29.020907.090847
    1. Lorenz RA, Jackson CW, Saitz M. Adjunctive use of atypical antipsychotics for treatment-resistant generalized anxiety disorder. Pharmacotherapy. 2010;30(9):942-951. doi:10.1592/phco.30.9.942
    1. Button ML, Westra HA, Hara KM, Aviram A. Disentangling the impact of resistance and ambivalence on therapy outcomes in cognitive behavioural therapy for generalized anxiety disorder. Cogn Behav Ther. 2015;44(1):44-53. doi:10.1080/16506073.2014.959038
    1. Fava M, Rush AJ, Alpert JE, et al. . Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. Am J Psychiatry. 2008;165(3):342-351. doi:10.1176/appi.ajp.2007.06111868
    1. Olatunji BO, Cisler JM, Deacon BJ. Efficacy of cognitive behavioral therapy for anxiety disorders: a review of meta-analytic findings. Psychiatr Clin North Am. 2010;33(3):557-577. doi:10.1016/j.psc.2010.04.002
    1. Craske MG. Origins of Phobias and Anxiety Disorders: Why More Women Than Men? Elsevier; 2003.
    1. Grant BF, Hasin DS, Stinson FS, et al. . Prevalence, correlates, co-morbidity, and comparative disability of DSM-IV generalized anxiety disorder in the USA: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychol Med. 2005;35(12):1747-1759. doi:10.1017/S0033291705006069
    1. Roth WT, Doberenz S, Dietel A, et al. . Sympathetic activation in broadly defined generalized anxiety disorder. J Psychiatr Res. 2008;42(3):205-212. doi:10.1016/j.jpsychires.2006.12.003
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; 2013.
    1. Logue MB, Thomas AM, Barbee JG, et al. . Generalized anxiety disorder patients seek evaluation for cardiological symptoms at the same frequency as patients with panic disorder. J Psychiatr Res. 1993;27(1):55-59. doi:10.1016/0022-3956(93)90049-8
    1. Hoehn-Saric R, McLeod DR, Funderburk F, Kowalski P. Somatic symptoms and physiologic responses in generalized anxiety disorder and panic disorder: an ambulatory monitor study. Arch Gen Psychiatry. 2004;61(9):913-921. doi:10.1001/archpsyc.61.9.913
    1. Hoehn-Saric R, McLeod DR. Anxiety and arousal: physiological changes and their perception. J Affect Disord. 2000;61(3):217-224. doi:10.1016/S0165-0327(00)00339-6
    1. Khalsa SS, Adolphs R, Cameron OG, et al. ; Interoception Summit 2016 Participants . Interoception and mental health: a roadmap. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(6):501-513. doi:10.1016/j.bpsc.2017.12.004
    1. Grillon C, Robinson OJ, Cornwell B, Ernst M. Modeling anxiety in healthy humans: a key intermediate bridge between basic and clinical sciences. Neuropsychopharmacology. 2019;44(12):1999-2010. doi:10.1038/s41386-019-0445-1
    1. Khalsa SS, Rudrauf D, Sandesara C, Olshansky B, Tranel D. Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. Int J Psychophysiol. 2009;72(1):34-45. doi:10.1016/j.ijpsycho.2008.08.010
    1. Cleaveland CR, Rangno RE, Shand DG. A standardized isoproterenol sensitivity test: the effects of sinus arrhythmia, atropine, and propranolol. Arch Intern Med. 1972;130(1):47-52. doi:10.1001/archinte.1972.03650010035007
    1. Borges N, Sarmento A, Azevedo I. Dynamics of experimental vasogenic brain oedema in the rat: changes induced by adrenergic drugs. J Auton Pharmacol. 1999;19(4):209-217. doi:10.1046/j.1365-2680.1999.00137.x
    1. Hassanpour MS, Yan L, Wang DJ, et al. . How the heart speaks to the brain: neural activity during cardiorespiratory interoceptive stimulation. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):371. doi:10.1098/rstb.2016.0017
    1. Murphy VA, Johanson CE. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab. 1985;5(3):401-412. doi:10.1038/jcbfm.1985.55
    1. Khalsa SS, Craske MG, Li W, Vangala S, Strober M, Feusner JD. Altered interoceptive awareness in anorexia nervosa: effects of meal anticipation, consumption and bodily arousal. Int J Eat Disord. 2015;48(7):889-897. doi:10.1002/eat.22387
    1. Khalsa SS, Hassanpour MS, Strober M, Craske MG, Arevian AC, Feusner JD. interoceptive anxiety and body representation in anorexia nervosa. Front Psychiatry. 2018;9(444):444. doi:10.3389/fpsyt.2018.00444
    1. Khalsa SS, Rudrauf D, Feinstein JS, Tranel D. The pathways of interoceptive awareness. Nat Neurosci. 2009;12(12):1494-1496. doi:10.1038/nn.2411
    1. Khalsa SS, Feinstein JS, Li W, Feusner JD, Adolphs R, Hurlemann R. Panic anxiety in humans with bilateral amygdala lesions: pharmacological induction via cardiorespiratory interoceptive pathways. J Neurosci. 2016;36(12):3559-3566. doi:10.1523/JNEUROSCI.4109-15.2016
    1. Hassanpour MS, Simmons WK, Feinstein JS, et al. . The insular cortex dynamically maps changes in cardiorespiratory interoception. Neuropsychopharmacology. 2018;43(2):426-434. doi:10.1038/npp.2017.154
    1. Cameron OG, Minoshima S. Regional brain activation due to pharmacologically induced adrenergic interoceptive stimulation in humans. Psychosom Med. 2002;64(6):851-861. doi:10.1097/01.psy.0000038939.33335.32
    1. Sheehan DV, Lecrubier Y, Sheehan KH, et al. . The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(suppl 20):22-33.
    1. Campbell-Sills L, Norman SB, Craske MG, et al. . Validation of a brief measure of anxiety-related severity and impairment: the Overall Anxiety Severity and Impairment Scale (OASIS). J Affect Disord. 2009;112(1-3):92-101. doi:10.1016/j.jad.2008.03.014
    1. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092-1097. doi:10.1001/archinte.166.10.1092
    1. Pohl R, Yeragani VK, Balon R, et al. . Isoproterenol-induced panic attacks. Biol Psychiatry. 1988;24(8):891-902. doi:10.1016/0006-3223(88)90224-7
    1. Mills PJ, Dimsdale JE, Ancoli-Israel S, Clausen J, Loredo JS. The effects of hypoxia and sleep apnea on isoproterenol sensitivity. Sleep. 1998;21(7):731-735.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162-173. doi:10.1006/cbmr.1996.0014
    1. Restom K, Behzadi Y, Liu TT. Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage. 2006;31(3):1104-1115. doi:10.1016/j.neuroimage.2006.01.026
    1. Klein DF. Delineation of two drug-responsive anxiety syndromes. Psychopharmacologia. 1964;5:397-408. doi:10.1007/BF02193476
    1. Marten PA, Brown TA, Barlow DH, Borkovec TD, Shear MK, Lydiard RB. Evaluation of the ratings comprising the associated symptom criterion of DSM-III-R generalized anxiety disorder. J Nerv Ment Dis. 1993;181(11):676-682. doi:10.1097/00005053-199311000-00005
    1. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988-1001. doi:10.1016/S0025-6196(12)62272-1
    1. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433-469. doi:10.1146/annurev.neuro.25.032502.111311
    1. Saper CB, Stornetta RL. Central autonomic system. In: The Rat Nervous System. 4th ed. Elsevier; 2015:629-673. doi:10.1016/B978-0-12-374245-2.00023-1
    1. Carnevali L, Mancini M, Koenig J, et al. . Cortical morphometric predictors of autonomic dysfunction in generalized anxiety disorder. Auton Neurosci. 2019;217:41-48. doi:10.1016/j.autneu.2019.01.001
    1. Era V, Carnevali L, Thayer JF, Candidi M, Ottaviani C. Dissociating cognitive, behavioral and physiological stress-related responses through dorsolateral prefrontal cortex inhibition. Psychoneuroendocrinology. 2021;124:105070. doi:10.1016/j.psyneuen.2020.105070
    1. Gianaros PJ, Sheu LK, Uyar F, et al. . A brain phenotype for stressor-evoked blood pressure reactivity. J Am Heart Assoc. 2017;6(9):e006053. doi:10.1161/JAHA.117.006053
    1. Shoemaker JK, Wong SW, Cechetto DF. Cortical circuitry associated with reflex cardiovascular control in humans: does the cortical autonomic network “speak” or “listen” during cardiovascular arousal. Anat Rec (Hoboken). 2012;295(9):1375-1384. doi:10.1002/ar.22528
    1. Gianaros PJ, Onyewuenyi IC, Sheu LK, Christie IC, Critchley HD. Brain systems for baroreflex suppression during stress in humans. Hum Brain Mapp. 2012;33(7):1700-1716. doi:10.1002/hbm.21315
    1. Ashby WR. An Introduction to Cybernetics. Chapman & Hall; 1957. doi:10.1063/1.3060436
    1. Fuster JM. Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann N Y Acad Sci. 1990;608:318-329. doi:10.1111/j.1749-6632.1990.tb48901.x
    1. Petzschner FH, Garfinkel SN, Paulus MP, Koch C, Khalsa SS. Computational models of interoception and body regulation. Trends Neurosci. 2021;44(1):63-76. doi:10.1016/j.tins.2020.09.012
    1. Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):371. doi:10.1098/rstb.2016.0007
    1. Damasio AR. Descarte's Error: Emotion, Reason, and the Human Brain. Avon; 1994.
    1. Barrash J, Tranel D, Anderson SW. Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev Neuropsychol. 2000;18(3):355-381. doi:10.1207/S1532694205Barrash
    1. Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry. 2015;77(3):276-284. doi:10.1016/j.biopsych.2014.02.014
    1. Diekhof EK, Geier K, Falkai P, Gruber O. Fear is only as deep as the mind allows: a coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. Neuroimage. 2011;58(1):275-285. doi:10.1016/j.neuroimage.2011.05.073
    1. Makovac E, Fagioli S, Rae CL, Critchley HD, Ottaviani C. Can’t get it off my brain: meta-analysis of neuroimaging studies on perseverative cognition. Psychiatry Res Neuroimaging. 2020;295:111020. doi:10.1016/j.pscychresns.2019.111020
    1. Via E, Fullana MA, Goldberg X, et al. . Ventromedial prefrontal cortex activity and pathological worry in generalised anxiety disorder. Br J Psychiatry. 2018;213(1):437-443. doi:10.1192/bjp.2018.65
    1. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420(6911):70-74. doi:10.1038/nature01138
    1. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446-454. doi:10.1016/j.biopsych.2006.10.011
    1. Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci. 2000;20(16):6225-6231. doi:10.1523/JNEUROSCI.20-16-06225.2000
    1. Harrison BJ, Fullana MA, Via E, et al. . Human ventromedial prefrontal cortex and the positive affective processing of safety signals. Neuroimage. 2017;152:12-18. doi:10.1016/j.neuroimage.2017.02.080
    1. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA. From fear to safety and back: reversal of fear in the human brain. J Neurosci. 2008;28(45):11517-11525. doi:10.1523/JNEUROSCI.2265-08.2008
    1. Tashjian SM, Zbozinek TD, Mobbs D. A decision architecture for safety computations. Trends Cogn Sci. 2021;25(5):342-354. doi:10.1016/j.tics.2021.01.013
    1. Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR. Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress Anxiety. 2013;30(3):242-250. doi:10.1002/da.22016
    1. Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci. 2004;7(2):184-188. doi:10.1038/nn1173
    1. McTeague LM, Rosenberg BM, Lopez JW, et al. . Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am J Psychiatry. 2020;177(5):411-421. doi:10.1176/appi.ajp.2019.18111271
    1. Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143(10):1033-1081. doi:10.1037/bul0000096
    1. Koban L, Gianaros PJ, Kober H, Wager TD. The self in context: brain systems linking mental and physical health. Nat Rev Neurosci. 2021;22(5):309-322. doi:10.1038/s41583-021-00446-8
    1. Babo-Rebelo M, Richter CG, Tallon-Baudry C. Neural responses to heartbeats in the default network encode the self in spontaneous thoughts. J Neurosci. 2016;36(30):7829-7840. doi:10.1523/JNEUROSCI.0262-16.2016
    1. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Population coding of affect across stimuli, modalities and individuals. Nat Neurosci. 2014;17(8):1114-1122. doi:10.1038/nn.3749
    1. Mesulam MM, Mufson EJ. Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol. 1982;212(1):38-52. doi:10.1002/cne.902120104
    1. Craig AD. How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655-666. doi:10.1038/nrn894
    1. Cameron OG. Interoception: the inside story—a model for psychosomatic processes. Psychosom Med. 2001;63(5):697-710. doi:10.1097/00006842-200109000-00001
    1. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189-195. doi:10.1038/nn1176
    1. Stein MB, Simmons AN, Feinstein JS, Paulus MP. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry. 2007;164(2):318-327. doi:10.1176/ajp.2007.164.2.318
    1. Cui H, Zhang B, Li W, et al. . Insula shows abnormal task-evoked and resting-state activity in first-episode drug-naïve generalized anxiety disorder. Depress Anxiety. 2020;37(7):632-644. doi:10.1002/da.23009
    1. Makovac E, Watson DR, Meeten F, et al. . Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety. Soc Cogn Affect Neurosci. 2016;11(11):1719-1728. doi:10.1093/scan/nsw091
    1. Makovac E, Meeten F, Watson DR, et al. . Alterations in amygdala-prefrontal functional connectivity account for excessive worry and autonomic dysregulation in generalized anxiety disorder. Biol Psychiatry. 2016;80(10):786-795. doi:10.1016/j.biopsych.2015.10.013
    1. Ottaviani C, Thayer JF, Verkuil B, et al. . Physiological concomitants of perseverative cognition: a systematic review and meta-analysis. Psychol Bull. 2016;142(3):231-259. doi:10.1037/bul0000036

Source: PubMed

3
S'abonner