Pharmacogenetics of antipsychotic-induced side effects

Todd Lencz, Anil K Malhotra, Todd Lencz, Anil K Malhotra

Abstract

Currently available antipsychotic drugs (APDs) carry significant though highly variable, liability to neurologic and metabolic side effects. Pharmacogenetics approaches offer the possibility of identifying patient-specific biomarkers for predicting risk of these side effects. To date, a few single nucleotide polymorphisms (SNPs) in a handful of genes have received convergent support across multiple studies. The primary focus has been on SNPs in dopamine and serotonin receptor genes: persuasive meta-analytic evidence exists for an effect of the dopamine D2 and D3 receptor genes (DRD2 and DRD3) in risk for tardive dyskinesia (TD) and for an effect of variation at the 5-HT2C receptor gene (HTR2C) for liability to APD-induced weight gain. However, effect sizes appear to be modest, and pharmacoeconomic considerations have not been sufficiently studied, thereby limiting clinical applicability at this time. Effects of these genes and others on risk for TD, extrapyramidal side effects, hyperprolactinemia, and weight gain are reviewed in this article.

Figures

Figure 1.. Location of the Taq1A polymorphism…
Figure 1.. Location of the Taq1A polymorphism in the context of ANKK1 and DRD2 at chromosome 11q22. Red triangles represent areas of high linkage equilibrium (D').

References

    1. Saha S., Chant D., Welham J., McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2:e141.
    1. Goff DC., Gather C., Evins AE., Henderson DC., et al. Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. J Clin Psychiatry. 2005;66:183–194.
    1. Palmer BW., Heaton RK., Gladsjo JA., et al. Heterogeneity in functional status among older outpatients with schizophrenia: employment history, living situation, and driving. Schizophr Res. 2002;55:205–215.
    1. World Health Organization. World Health Report 2001: new understanding, new hope. Geneva: World Health Organization, 2001
    1. Murray CJL., Lopez AD. The Global Burden of Disease: a Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and projected to 2020. Cambridge, MA: Harvard University Press; 1996
    1. World Health Organization, international Classification of Functioning, Disability and Health- ICF. Geneva, Switzerland: World Health Organization, 2001
    1. Lieberman JA., Stroup TS., McEvoy JP., et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–1223.
    1. Jones PB., Barnes TR., Davies L., et al. Randomized controlled trial of the effect on Quality of Life of second- vs first-generation antipsychotic drugs in schizophrenia: cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study (CUtLASS 1). Arch Gen Psychiatry. 2006;63:1079–1087.
    1. Kahn RS., Fleischhacker WW., Boter H., et al. EUFEST study group. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: an open randomised clinical trial. Lancet. 2008;371:1085–1097.
    1. Kane JM. Treatment adherence and long-term outcomes. CNS Spectr. 2007;12(10suppl 17):21–26.
    1. Robinson D., Woerner MG., Alvir JMJ., et al. Predictors of relapse following response from a first episode of schizophrenia or schizoaffective disorder. Arch Gen Psychiatry. 1999;56:241–247.
    1. Weiden PJ., Olfson M. Cost of relapse in schizophrenia. Schizophr Bull. 1995;21:419–429.
    1. Correll CU. Balancing efficacy and safety in treatment with antipsychotics. CNS Spectr. 2007;12(10 suppl 17):12–20.
    1. Robinson DG., Woerner MG., Alvir JM., Bilder RM., Hinrichsen GA., Lieberman JA. Predictors of medication discontinuation by patients with first-episode schizophrenia and schizoaffective disorder. Schizophr Res. 2002;57:209–219.
    1. Tandon R., Belmaker RH., Gattaz WF., et al. World Psychiatric Association Pharmacopsychiatry Section statement on comparative effectiveness of antipsychotics in the treatment of schizophrenia. Schizophr Res. 2008;100:20–38.
    1. Casey DE. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res. 1991;4:109–120.
    1. Kane JM., Woerner M., Lieberman J. Tardive dyskinesia: prevalence, incidence, and risk factors. J Clin Psychopharmacol. 1988;8(4 suppl):52S–56S.
    1. Jeste DV., Caligiuri MP. Tardive dyskinesia. Schizophr Bull. 1993;19:303–315.
    1. Ascher-Svanum H., Zhu B., Faries D., Peng X., Kinon BJ., Tohen M. Tardive dyskinesia and the 3-year course of schizophrenia: results from a large, prospective, naturalistic study. J Clin Psychiatry. 2008;69:1580–1588.
    1. Lehman AF., Lieberman JA., Dixon LB., et al. American Psychiatric Association; Steering Committee on Practice Guidelines. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry. 2004;161(2suppl):1–56.
    1. Kane JM. Tardive dyskinesia rates with atypical antipsychotics in adults: prevalence and incidence. J Clin Psychiatry. 2004;65 suppl 9:16–20. Review.
    1. Correll CU., Leucht S., Kane JM. Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry. 2004;161:414–425.
    1. Kane JM., Fleischhacker WW., Hansen L., Perlis R., Pikalov A 3rd., Assunçâo-Talbott S. Akathisia: an updated review focusing on second-generation antipsychotics. J Clin Psychiatry. 2009;70:627–643.
    1. Leucht S., Wahlbeck K., Hamann J., Kissling W. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet. 2003;361:1581–1589.
    1. Miller del D., Caroff SN., Davis SM., et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Extrapyramidal side-effects of antipsychotics in a randomised trial. Br J Psychiatry. 2008;193:279–288.
    1. Leucht S., Corves C., Arbter D., Engel RR., Li C., Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a metaanalysis. Lancet. 2009;373:31–41.
    1. Kapur S., Matno D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1081–1090.
    1. Parsons B., Allison DB., Loebel A., Williams K., Giller E., Romano S., Siu C. Weight effects associated with antipsychotics: a comprehensive database analysis. Schizophr Res. 2009;110:103–110.
    1. Kane JM., Barrett EJ., Casey DE., Correll CU., Gelenberg AJ., Klein S., Newcomer JW. Metabolic effects of treatment with atypical antipsychotics. J Clin Psychiatry. 2004;65:1447–1455.
    1. Allison DB., Mentore JL., Heo M., Chandler LP., Cappelleri JC., Infante MC., Weiden PJ. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1 999;156:1686–1696.
    1. Allison DB., Newcomer JW., Dunn AL., et al. Obesity among those with mental disorders: a National Institute of Mental Health meeting report. Am JPrevMed. 2009;36:341–350.
    1. Correll CU. Monitoring and management of antipsychotic-related metabolic and endocrine adverse events in pediatric patients. Int Rev Psychiatry. 2008;20:195–201.
    1. Tenback DE., van Harten PN., Slooff CJ., van Os J. Evidence that early extrapyramidal symptoms predict later tardive dyskinesia: a prospective analysis of 10,000 patients in the European Schizophrenia Outpatient Health Outcomes (SOHO) study. Am J Psychiatry. 2006;163:1438–1440.
    1. Kapur S., Barlow K., VanderSpek SC., Javanmard M., Nobrega JN. Druginduced receptor occupancy: substantial differences in measurements made in vivo vs ex vivo. Psychopharmacology (Berl). 2001;157:168–171.
    1. Neville MJ., Johnstone EC., Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004;23:540–545.
    1. Thompson J., Thomas N., Singleton A., et al. D2 dopamine receptor gene (DRD2) TaqIA polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7:479–484.
    1. Pohjalainen T., Rinne JO., Nâgren K., et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry. 1998;3:256–260.
    1. Zai CC., De Luca V., Hwang RW., et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007;12:794–795.
    1. Bakker PR., van Harten PN., van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1 A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry. 2008;13:544–556.
    1. Lerer B., Segman RH., Fangerau H., et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology. 2002;27:105–119.
    1. Bakker PR., van Harten PN., van Os J. Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res. 2006;83:185–192.
    1. Tsai HT., North KE., West SL., Poole C. The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: A meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 8. [Epub ahead of print]
    1. Lerer B., Segman RH., Tan EC., et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol. 2005;8:411–425.
    1. Patsopoulos NA., Ntzani EE., Zintzaras E., loannidis JP. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005;15:151–158.
    1. Schwartz JC., Diaz J., Pilon C., Sokoloff P. Possible implications of the dopamine D receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev. 2000;31:277–287.
    1. Schwartz JC., Levesque D., Martres MP., Sokoloff P. Dopamine D3 receptor: basic and clinical aspects. Clin Neuropharmacol. 1993;16:295–314.
    1. Lundstrom K., Turpin MP. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki forest virus system. Biochem Biophys Res Commun. 1996;23:225:1068–1072.
    1. Jeanneteau F., Funalot B., Jankovic J., et al. Afunctional variant of the dopamine D3 receptor is associated with risk and age-at- onset of essential tremor. Proc Natl Acad Sci USA. 2006:11;103:10753–10758.
    1. Shaikh S., Collier DA., Sham PC., et al. Allelic association between a Ser9-Gly polymorphism in the dopamine D3 receptor gene and schizophrenia. Hum Genet. 1996;97:714–719.
    1. Scharfetter J., Chaudhry HR., Hornik K., et al. Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakistani patients. Eur Neuropsychopharmacol. 1999;10:17–20.
    1. Szekeres G., Kéri S., Juhâsz A., et al. Role of dopamine D3 receptor (DRD3) and dopamine transporter (DAT) polymorphism in cognitive dysfunctions and therapeutic response to atypical antipsychotics in patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004;124:1–5.
    1. Lane HY., Hsu SK., Liu YC., Chang YC., Huang CH., Chang WH. Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol. 2005;25:6–11.
    1. Malhotra AK., Goldman D., Buchanan RW., et al. The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response. Mol Psychiatry. 1998;3:72–75.
    1. Xuan J., Zhao X., He G., Yu L., et al. Effects of the dopamine D Receptor (DRD3) gene polymorphisms on risperidone response: a pharmacogenetic study. Neuropsychopharmacoiogy. 2008;33:305–311.
    1. Xiao R., Boehnke M. Quantifying and correcting for the winner's curse in genetic association studies. Genet Epidemiol. 2009;33:453–462.
    1. Tsai HT., Caroff SN., Miller DD., et al. A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet. 2009 May 27. [Epub ahead of print]
    1. Mànnistô PT., Ulmanen I., Lundstrôm K., et al. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res. 1992;39:291–350.
    1. Lachrnan HM., Papolos DF., Saito T., Yu YM., Szumlanski CL., Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatrie disorders. Pharmacogenetics. 1996;6:243–250.
    1. Farde L., Nyberg S., Oxenstierna G., Nakashima Y., Halldin C., Ericsson B. Positron emission tomography studies on D2 and 5-HT2 receptor binding in risperidonetreated schizophrenic patients. J Clin Psychopharmacol. 1995;15:19S–23S.
    1. Kapur S., Zipursky RB., Remington G., et al. 5- HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry. 1998;155:921–928.
    1. Rasmussen K., Aghajanian GK. Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity. Neuropsychopharmacoiogy. 1988;1:101–107.
    1. Trichard C., Paillère-Martinot ML., Attar-Levy D., Recassens C., Monnet F., Martinet JL. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry. 1998;155:505–508.
    1. Arranz MJ., Munro J., Sham P., et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res. 1998;32:93–99.
    1. Myers RL., Airey DC., Manier DH., Shelton RC., Sanders-Bush E. Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol Psychiatry. 2007;61:167–173.
    1. Waeber C., Palacios JM. Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. Brain Res Mol Brain Res. 1994;24:199–209.
    1. Bishop C., Tessmer JL., Ullrich T., Rice KC., Walker PD. Serotonin 5-HT2A receptors underlie increased motor behaviors induced in dopaminedepleted rats by intrastriatal 5-HT2A/2C agonism. J Pharmacol Exp Ther. 2004;310:687–694.
    1. Caccia S. New antipsychotic agents for schizophrenia: pharmacokinetics and metabolism update. Curr Opin Investig Drugs. 2002;3:1073–1080.
    1. Bertilsson L., Dahl ML., Dalén P., Al-Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002;53:111–122.
    1. Kobylecki CJ., Jakobsen KD., Hansen T., Jakobsen IV., Rasmussen HB., Werge T. CYP2D6 genotype predicts antipsychotic side effects in schizophrenia inpatients: a retrospective matched case-control study. Neuropsychobiology. 2009;59:222–226.
    1. Eichhammer P., Albus M., Borrmann-Hassenbach M., et al. Association of dopamine D3-receptor gene variants with neuroleptic induced akathisia in schizophrenic patients: a generalization of Steen's study on DRD3 and tardive dyskinesia. Am J Med Genet. 2000;96:187–119.
    1. Gunes A., Scordo MG., Jaanson P., Dahl ML. Serotonin and dopamine receptor gene polymorphisms and the risk of extrapyramidal side effects in perphenazine-treated schizophrenic patients. Psychopharmacology (Berl). 2007;190:479–484.
    1. Guzey C., Scordo MG., Spina E., Landsem VM., Spigset O. Antipsychoticinduced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and transporter polymorphisms. Eur J Clin Pharmacol. 2007;63:233–241.
    1. Gassô P., Mas S., Bernardo M., Alvarez S., Parellada E., Lafuente A. A common variant in DRD3 gene is associated with risperidone-induced extrapyramidal symptoms. Pharmacogenomics J. 2009;9:404–410.
    1. Greenbaum L., Strous RD., Kanyas K., et al. Association of the RGS2 gene with extrapyramidal symptoms induced by treatment with antipsychotic medication. Pharmacogenet Genomics. 2007;17:519–528.
    1. Greenbaum L., Smith RC., Rigbi A., et al. Further evidence for association of the RGS2 gene with antipsychotic-induced parkinsonism: protective role of a functional polymorphism in the 3'-untranslated region. Pharmacogenomics J. 2009;9:103–110.
    1. Al Hadithy AF., Wilffert B., Bruggeman R., et al. Lack of association between antipsychotic-induced Parkinsonism or its subsyrnptorns and rs4606 SNP of RGS2 gene in African-Caribbeans and the possible role of the medication: the Curacao extrapyramidal syndromes study X. Hum Psychopharmacol. 2009;24:123–128.
    1. Calarge CA., Ellingrod VL., Acion L., et al. Variants of the dopamine D2 receptor gene and risperidone-induced hyperprolactinemia in children and adolescents. Pharmacogenet Genomics. 2009;19:373–382.
    1. Kwon JS., Kim E., Kang DH., Choi JS., Yu KS., Jang IJ., Shin SG. APLUS study group. TaqlA polymorphism in the dopamine D2 receptor gene as a predictor of clinical response to aripiprazole. fur. Neuropsychopharmacol. 2008;18:897–907.
    1. Yasui-Furukori N., Saito M., Tsuchimine S., et al. Association between dopamine-related polymorphisms and plasma concentrations of prolactin during risperidone treatment in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1491–1495.
    1. Aklillu E., Kalow W., Endrenyi L., Harper P., Miura J., Ozdemir V. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics. 2007;17:989–993.
    1. Anderson GM., Scahill L., McCracken JT., et al. Effects of short- and longterm risperidone treatment on prolactin levels in children with autism. Biol Psychiatry. 2007;61:545–550.
    1. Young RM., Lawford BR., Barnes M., et al. Prolactin levels in antipsychotic treatment of patients with schizophrenia carrying the DRD2*A1 allele. Br J Psychiatry. 2004;185:147–151.
    1. Mihara K., Kondo T., Suzuki A., et al. Prolactin response to nemonapride, a selective antagonist for D2 like dopamine receptors, in schizophrenic patients in relation to TaqlA polymorphism of DRD2 gene. Psychopharmacology (Berl). 2000;149:246–250.
    1. Compton MT., Miller AH. Antipsychotic-induced hyperprolactinemia and sexual dysfunction. Psychopharmacol Bull . 2002;36:143–164.
    1. Reynolds GP. Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. J Psychopharmacol. 2004;18:340–345.
    1. Adan RA., Vanderschuren LJ., la Fleur SE. Anti-obesity drugs and neural circuits of feeding. Trends Pharmacol Sci. 2008;29:208–217.
    1. Davis R., Faulds D. Dexfenf luramine. An updated review of its therapeutic use in the management of obesity. Drugs. 1996;52:696–724.
    1. Reynolds GP., Zhang ZJ., Zhang XB. Association of antipsychotic druginduced weight gain with a 5-HT2C receptor gene polymorphism. Lancet. 2002;359:2086–2087.
    1. Miller DD., Ellingrod VL., Holman TL., Buckley PF., Arndt S. Clozapineinduced weight gain associated with the 5HT2C receptor -759C/T polymorphism. Am J Med Genet. 2005;133:97–100.
    1. Reynolds GP., Zhang Z., Zhang X. Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Ami J Psychiatry. 2003;160:677–679.
    1. Ellingrod VL., Perry PJ., Ringold JC., et al. Weight gain associated with the -759C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet. B Neuropsychiatr Genet. 2005;34:76–78.
    1. Templeman LA., Reynolds GP., Arranz B., San L. Polymorphisms of the 5HT2C receptor and leptin genes are associated with antipsychotic druginduced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics. 2005;15:195–200.
    1. Lane HY., Liu YC., Huang CL., et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol. 2006;26:128–134.
    1. Ryu S., Cho EY., Park T. -759 QT polymorphism of 5-HT2C receptor gene and early phase weight gain associated with antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:673–677.
    1. Tsai SJ., Hong CJ., Yu YW., Lin CH. -759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet. 2002;360:1790.
    1. Basile VS., Masellis M., De Luca V., Meltzer HY., Kennedy JL. 759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet. 2002;360:1790–1791.
    1. Theisen FM., Hinney A., Brômel T., et al. Lack of association between the -759C/T polymorphism of the 5-HT2C receptor gene and clozapine-induced weight gain among German schizophrenic individuals. Psychiatr Genet. 2004;14:139–142.
    1. Reynolds GP., Templeman LA., Zhang ZJ. The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1021–1028.
    1. Rosskopf D., Busch S., Manthey I., Siffert W. G protein beta 3 gene: structure, promoter, and additional polymorphisms. Hypertension. 2000;36:33–41.
    1. Siffert W. G-protein beta3 subunit 825T allele and hypertension. Curr Hypertens Rep. 2003;5:47–53.
    1. Souza RP., De Luca V., Muscettola G., et al. Association of antipsychotic induced weight gain and body mass index with GNB3 gene: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1848–1853.
    1. erlis RH., Ganz DA., Avorn J. Pharmacogenetic testing in the clinical management of schizophrenia: a decision-analytic model. Clin Psychopharmacol. 2005;25:427–434.
    1. Conley RR., Kelly DL. Management of treatment resistance in schizophrenia. Biol Psychiatry. 2001;50:898–911.
    1. Lencz T., Morgan TV., Athanasiou M., et al. Converging evidence for a pseudoautosotnal cytokine receptor gene locus in schizophrenia. Mol Psychiatry. 2007;12:572–580.
    1. Osterfield M., Egelund R., Young LM., Flanagan JG. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development. 2008;135:1189–1199.
    1. Roohi J., Montagna C., Tegay DH., et al. Disruption of contactin 4 in three subjects with autism spectrum disorder. J Med Genet. 2009;46:176–182.
    1. icchioni MM., Murray RM. Schizophrenia. BMJ. 2007;335:91–95.
    1. Larsen TK., Friis S., Haahr U., et al. Early detection and intervention in first-episode schizophrenia: a critical review. Acta Psychiatr Scand. 2001;103:323–334.
    1. Melle I., Larsen TK., Haahr U., et al. Prevention of negative symptom psychopathologies in first-episode schizophrenia: two-year effects of reducing the duration of untreated psychosis. Arch Gen Psychiatry. 2008;65:634–640.
    1. Lencz T., Robinson DG., Xu K., et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in firstepisode schizophrenia patients. Am J Psychiatry. 2006;163:529–531.

Source: PubMed

3
S'abonner