Inflammation and pro-resolution inflammation after hepatobiliary surgery

Juan P Cata, Jose F Velasquez, Maria F Ramirez, Jean-Nicolas Vauthey, Vijaya Gottumukkala, Claudius Conrad, Bradford J Kim, Thomas Aloia, Juan P Cata, Jose F Velasquez, Maria F Ramirez, Jean-Nicolas Vauthey, Vijaya Gottumukkala, Claudius Conrad, Bradford J Kim, Thomas Aloia

Abstract

Background: The magnitude of the perioperative inflammatory response plays a role in surgical outcomes. However, few studies have explored the mechanisms of the resolution of inflammation in the context of surgery. Here, we described the temporal kinetics of interleukin-6, cortisol, lipoxin A4, and resolvin D in patients who underwent oncologic liver resections.

Methods: All patients gave written informed consent. Demographic and perioperative surgical data were collected, along with blood samples, before surgery and on the mornings of postoperative days 1, 3, and 5. Interleukin-6, cortisol, lipoxin-A4, and resolvin D were measured in plasma. A P value < 0.05 was considered statistically significant.

Results: Forty-one patients were included in the study. Liver resection for colorectal metastatic disease was the most commonly performed surgery. The plasma concentrations of interleukin-6 were highest on day 1 after surgery and remained higher than the baseline up to postoperative day 1. Postoperative complications occurred in 14 (24%) patients. Cortisol concentrations spiked on postoperative day 1. The concentrations of lipoxin A4 and resolvin D were lowest on day 1 after surgery.

Conclusions: The inflammatory response associated with hepatobiliary surgery is associated with low circulating concentrations of lipoxin A4 and resolvin D that mirror, in an opposite manner, the kinetics of interleukin 6 and cortisol.

Trial registration: NCT01438476.

Keywords: Complications; Hepatobiliary surgery; Inflammation; Resolution.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the MD Anderson Institutional Review Board (IRB #2011-1046). All patients gave written informed consent prior to enrolling in the study.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a, b Perioperative circulating concentrations of IL-6 and cortisol, respectively. Both markers showed a significant rise and peak on day 1 after surgery. *p < 0.05, **p < 0.01, and ***p < 0.001
Fig. 2
Fig. 2
a, b Perioperative circulating concentrations of LXA4 and RvD, respectively. Both SPMs decreased on day 1 after surgery; however, the concentrations of LXA4 did not recover postoperatively. *p < 0.05, **p < 0.01, and ***p < 0.001

References

    1. Kimura F, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Yoshitomi H, Nozawa S, Furukawa K, Mitsuhashi N, Sawada S, et al. Circulating cytokines, chemokines, and stress hormones are increased in patients with organ dysfunction following liver resection. J Surg Res. 2006;133:102–112. doi: 10.1016/j.jss.2005.10.025.
    1. Blakely AM, Heffernan DS, McPhillips J, Cioffi WG, Miner TJ. Elevated C-reactive protein as a predictor of patient outcomes following palliative surgery. J Surg Oncol. 2014;110:651–655. doi: 10.1002/jso.23682.
    1. Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2016;16:51–67. doi: 10.1038/nri.2015.4.
    1. Terrando N, Gomez-Galan M, Yang T, Carlstrom M, Gustavsson D, Harding RE, Lindskog M, Eriksson LI. Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline. FASEB J. 2013;27:3564–3571. doi: 10.1096/fj.13-230276.
    1. Tomasdottir V, Vikingsson A, Freysdottir J, Hardardottir I. Dietary fish oil reduces the acute inflammatory response and enhances resolution of antigen-induced peritonitis. J Nutr Biochem. 2013;24:1758–1765. doi: 10.1016/j.jnutbio.2013.03.005.
    1. Pillai PS, Leeson S, Porter TF, Owens CD, Kim JM, Conte MS, Serhan CN, Gelman S. Chemical mediators of inflammation and resolution in post-operative abdominal aortic aneurysm patients. Inflammation. 2012;35:98–113. doi: 10.1007/s10753-011-9294-8.
    1. Ramirez MF, Ai D, Bauer M, Vauthey JN, Gottumukkala V, Kee S, Shon D, Truty M, Kuerer HM, Kurz A, et al. Innate immune function after breast, lung, and colorectal cancer surgery. J Surg Res. 2015;194:185–193. doi: 10.1016/j.jss.2014.10.030.
    1. Porembka MR, Hall BL, Hirbe M, Strasberg SM. Quantitative weighting of postoperative complications based on the accordion severity grading system: demonstration of potential impact using the american college of surgeons national surgical quality improvement program. J Am Coll Surg. 2010;210:286–298. doi: 10.1016/j.jamcollsurg.2009.12.004.
    1. Brooke-Smith M, Figueras J, Ullah S, Rees M, Vauthey JN, Hugh TJ, Garden OJ, Fan ST, Crawford M, Makuuchi M, et al. Prospective evaluation of the International Study Group for Liver Surgery definition of bile leak after a liver resection and the role of routine operative drainage: an international multicentre study. HPB (Oxford) 2015;17:46–51. doi: 10.1111/hpb.12322.
    1. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christophi C, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS) Surgery. 2011;149:713–724. doi: 10.1016/j.surg.2010.10.001.
    1. Erinjeri JP, Thomas CT, Samoilia A, Fleisher M, Gonen M, Sofocleous CT, Thornton RH, Siegelbaum RH, Covey AM, Brody LA, et al. Image-guided thermal ablation of tumors increases the plasma level of interleukin-6 and interleukin-10. J Vasc Interv Radiol. 2013;24:1105–1112. doi: 10.1016/j.jvir.2013.02.015.
    1. Lahiri R, Derwa Y, Bashir Z, Giles E, Torrance HD, Owen HC, O'Dwyer MJ, O'Brien A, Stagg AJ, Bhattacharya S, et al. Systemic inflammatory response syndrome after major abdominal surgery predicted by early upregulation of TLR4 and TLR5. Ann Surg. 2016;263:1028–1037. doi: 10.1097/SLA.0000000000001248.
    1. Cheng Q, Wang Z, Ma R, Chen Y, Yan Y, Miao S, Jiao J, Cheng X, Kong L, Ye D. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation. Int Immunopharmacol. 2016;39:229–235. doi: 10.1016/j.intimp.2016.07.026.
    1. Martindale RG, Warren MM, McClave SA. Does the use of specialized proresolving molecules in critical care offer a more focused approach to controlling inflammation than that of fish oils? Curr Opin Clin Nutr Metab Care. 2016;19:151–154. doi: 10.1097/MCO.0000000000000250.
    1. Gutierrez AD, Sathyanarayana P, Konduru S, Ye Y, Birnbaum Y, Bajaj M. The effect of pioglitazone treatment on 15-epi-lipoxin A4 levels in patients with type 2 diabetes. Atherosclerosis. 2012;223:204–208. doi: 10.1016/j.atherosclerosis.2012.04.016.
    1. Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation. 1992;86:56–63. doi: 10.1161/01.CIR.86.1.56.
    1. Grenon SM, Owens CD, Nosova EV, Hughes-Fulford M, Alley HF, Chong K, Perez S, Yen PK, Boscardin J, Hellmann J, et al. Short-term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I Trial) J Am Heart Assoc. 2015;4:e002034.

Source: PubMed

3
S'abonner