Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia

Elena K Enax-Krumova, Stephanie Pohl, Andrea Westermann, Christoph Maier, Elena K Enax-Krumova, Stephanie Pohl, Andrea Westermann, Christoph Maier

Abstract

Background: In unilateral neuropathic pain. e.g. after peripheral nerve injury, both positive and negative sensory signs occur often, accompanied by minor but equally directed contralateral sensory changes. To mimic this feature, we experimentally aimed to induce concomitant c-fibre sensitization and block in healthy subjects and analyzed the bilateral sensory changes by quantitative sensory testing (QST) using the protocol of the German Research Network on Neuropathic Pain.

Methods: Twenty eight healthy subjects were firstly randomized in 2 groups to receive either topical capsaicin (0.6%, 12 cm2, application duration: 15 min.) or a lidocaine/prilocaine patch (25/25 mg, 10 cm2, application duration: 60 min.) on the right volar forearm. Secondly, 7-14 days later in the same area either at first capsaicin (for 15 min.) and immediately afterwards local anesthetics (for 60 min.) was applied (Cap/LA), or in inversed order with the same application duration (LA/Cap). Before, after each application and 7-14 days later a QST was performed bilaterally.

Statistics: Wilcoxon-test, ANOVA, p < 0.05.

Results: Single application of 0,6% capsaicin induced thermal hypoesthesia, cold hypoalgesia, heat hyperalgesia and tactile allodynia. Lidocaine/prilocaine alone induced thermal and tactile hypoesthesia as well as mechanical and cold hypoalgesia, and a heat hyperalgesia (to a smaller extent). Ipsilaterally both co-applications induced a combination of the above mentioned changes. Significant contralateral sensory changes occurred only after the co-application with concomitant sensitization and hypoesthesia and comprised increased cold (Cap/LA, LA/Cap) and mechanical detection as well as cold pain threshold (LA/Cap).

Conclusion: The present experimental model using combined application of capsaicin and LA imitates partly the complex sensory changes observed in patients with unilateral neuropathic pain and might be used as an additional surrogate model. Only the concomitant use both agents in the same area induces both positive and negative sensory signs ipsilaterally as well as parallel contralateral sensory changes (to a lesser extent).

Trial registration: ClinicalTrials.gov Identifier NCT01540877 , registered on 23 February 2012.

Keywords: Capsaicin; Contralateral sensory changes; Experimental pain model; Local anesthetics; Neuropathic pain; Pain mechanisms; Quantitative sensory testing; Sensory profiles; Translational pain research.

Figures

Fig. 1
Fig. 1
Study design. QST: quantitative sensory testing; CDT, cold detection threshold; MDT, mechanical detection threshold; MPT, mechanical pain threshold; WDT, warm detection threshold
Fig. 2
Fig. 2
Intensity of ongoing pain during capsaicin application in the group with application of a single agent (Cap, black) as well as in the groups with combined application of first capsaicin and then local anesthetics (Cap/LA, gray) and of first local anesthetics and then capsaicin (LA/Cap, white)
Fig. 3
Fig. 3
Ipsilateral z-profiles measured before (black circuits) and after single application of (a) capsaicin or (b) local anesthetics, as well as after combined application of (c) first capsaicin then local anesthetics and (d) first local anesthetics then capsaicin (white circuits) as well as back to baseline 7-14 days later (black diamonds) on the subjects’ right forearm. Z-values between -1.96 and +1.96 represent the 95% confidential interval of the baseline measurement in the whole group of 28 healthy subjects, z-values greater than 0 demonstrate a sensory gain compared to the group mean of the baseline QST, while z-values less than 0 demonstrate a sensory loss. CDT, cold detection threshold; CPT, cold pain threshold; DMA, dynamic mechanical allodynia; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity; MPT, mechanical pain threshold; NRS, numeric rating scale; PHS, paradoxical heat sensation; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection threshold; WUR, wind-up ratio
Fig. 4
Fig. 4
Contralateral z-profiles measured before (black circuits) and after single application of (a) capsaicin or (b) local anesthetics, as well as after combined application of (c) first capsaicin then local anesthetics and (d) first local anesthetics then capsaicin (white circuits) as well as back to baseline 7-14 days later (black diamonds) on the subjects’ right forearm. Z-values between -1.96 and +1.96 represent the 95% confidential interval of the baseline measurement in the whole group of 28 healthy subjects, z-values greater than 0 demonstrate a sensory gain compared to the group mean of the baseline QST, while z-values less than 0 demonstrate a sensory loss. Red borders indicate significant contralateral changes. CDT, cold detection threshold; CPT, cold pain threshold; DMA, dynamic mechanical allodynia; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity; MPT, mechanical pain threshold; NRS, numeric rating scale; PHS, paradoxical heat sensation; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection threshold; WUR, wind-up ratio

References

    1. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–173. doi: 10.1016/S1474-4422(14)70251-0.
    1. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–819. doi: 10.1016/S1474-4422(10)70143-5.
    1. Baron R, Förster M, Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 2012;11(11):999–1005. doi: 10.1016/S1474-4422(12)70189-8.
    1. Demant DT, Lund K, Vollert J, Maier C, Segerdahl M, Finnerup NB, Jensen TS, Sindrup SH. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014;155(11):2263–2273. doi: 10.1016/j.pain.2014.08.014.
    1. Mainka T, Malewicz NM, Baron R, Enax-Krumova EK, Treede RD, Maier C. Presence of hyperalgesia predicts analgesic efficacy of topically applied capsaicin 8% in patients with peripheral neuropathic pain. Eur J Pain. 2016;20(1):116–129. doi: 10.1002/ejp.703.
    1. Bouhassira D, Attal N. Translational neuropathic pain research: A clinical perspective. Neuroscience. 2016;338:27–35. doi: 10.1016/j.neuroscience.2016.03.029.
    1. Maier C, Baron R, Tolle TR, Binder A, Birbaumer N, Birklein F, Gierthmuhlen J, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihofner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Uceyler N, Valet M, Wasner G, Treede RD. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150(3):439–450. doi: 10.1016/j.pain.2010.05.002.
    1. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Freynhagen R, Kennedy JD, Magerl W, Mainka T, Reimer M, Rice AS, Segerdahl M, Serra J, Sindrup S, Sommer C, Tölle T, Vollert J. Treede RD; German Neuropathic Pain Research Network (DFNS), and the EUROPAIN and NEUROPAINconsortia… Peripheral Neuropathic Pain: A mechanism-related organizing principle based on sensory profiles. Pain. 2017;158(2):261–272. doi: 10.1097/j.pain.0000000000000753.
    1. Klein T, Magerl W, Rolke R, Treede RD. Human surrogate models of neuropathic pain. Pain. 2005;115(3):227–233. doi: 10.1016/j.pain.2005.03.021.
    1. Binder A. Human surrogate models of neuropathic pain: validity and limitations. Pain. 2016;157(Suppl 1):S48–S52. doi: 10.1097/j.pain.0000000000000460.
    1. Huge V, Lauchart M, Forderreuther S, Kaufhold W, Valet M, Azad SC, Beyer A, Magerl W. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I) PLoS One. 2008;3(7) doi: 10.1371/journal.pone.0002742.
    1. Oaklander AL, Romans K, Horasek S, Stocks A, Hauer P, Meyer RA. Unilateral postherpetic neuralgia is associated with bilateral sensory neuron damage. Ann Neurol. 1998;44(5):789–795. doi: 10.1002/ana.410440513.
    1. Sinay VJ, Bonamico LH, Dubrovsky A. Subclinical sensory abnormalities in trigeminal neuralgia. Cephalalgia. 2003;23(7):541–544. doi: 10.1046/j.1468-2982.2003.00581.x.
    1. Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci. 1999;22(3):122–127. doi: 10.1016/S0166-2236(98)01302-2.
    1. Jensen TS, Baron R, Haanpää M, Kalso E, Loeser JD, Rice AS, Treede RD. A new definition of neuropathic pain. Pain. 2011;152(10):2204–2205. doi: 10.1016/j.pain.2011.06.017.
    1. Oaklander AL, Brown JM. Unilateral nerve injury produces bilateral loss of distal innervation. Ann Neurol. 2004;55(5):639–644. doi: 10.1002/ana.20048.
    1. Magerl W, Treede RD. Secondary tactile hypoesthesia: a novel type of pain-induced somatosensory plasticity in human subjects. Neurosci Lett. 2004;361(1-3):136–139. doi: 10.1016/j.neulet.2003.12.001.
    1. Gierthmühlen J, Enax-Krumova EK, Attal N, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Jensen TS, Freynhagen R, Kennedy JD, Mainka T, Rice A, Segerdahl M, Sindrup SH, Serra J, Tölle T, Treede RD, Baron R, Maier C. Who is healthy? Pain: Aspects to consider when including healthy volunteers in QST-based studies- a consensus statement by the EUROPAIN and NEUROPAIN consortia; 2015.
    1. Rolke R, Baron R, Maier C, Tölle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Bötefür IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihöfner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123(3):231–243. doi: 10.1016/j.pain.2006.01.041.
    1. Schattschneider J, Zum Buttel I, Binder A, Wasner G, Hedderich J, Baron R. Mechanisms of adrenosensitivity in capsaicin induced hyperalgesia. Eur J Pain. 2007;11(7):756–763. doi: 10.1016/j.ejpain.2006.11.005.
    1. Wasner G, Lee BB, Engel S, McLachlan E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain. 2008;131(Pt 9):2387–2400. doi: 10.1093/brain/awn169.
    1. Vollert J, Mainka T, Baron R, Enax-Krumova EK, Hüllemann P, Maier C, Pfau DB, Tölle T, Treede RD. Quality assurance for Quantitative Sensory Testing laboratories: development and validation of an automated evaluation tool for the analysis of declared healthy samples. Pain. 2015;156(12):2423–2430. doi: 10.1097/j.pain.0000000000000300.
    1. Geber C, Magerl W, Fondel R, Fechir M, Rolke R, Vogt T, Treede RD, Birklein F. Numbness in clinical and experimental pain--a cross-sectional study exploring the mechanisms of reduced tactile function. Pain. 2008;139(1):73–81. doi: 10.1016/j.pain.2008.03.006.
    1. Hinz A, Schwarz R. Anxiety and depression in the general population: normal values in the Hospital Anxiety and Depression Scale. Psychother Psychosom Med Psychol. 2001;51(5):193–200. doi: 10.1055/s-2001-13279.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Meyer K, Sprott H, Mannion AF. Cross-cultural adaptation, reliability, and validity of the German version of the Pain Catastrophizing Scale. J Psychosom Res. 2008;64(5):469–478. doi: 10.1016/j.jpsychores.2007.12.004.
    1. Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: Development and Validation. Psychol Assess. 1995;7(4):524–532. doi: 10.1037/1040-3590.7.4.524.
    1. Ruscheweyh R, Marziniak M, Stumpenhorst F, Reinholz J, Knecht S. Pain sensitivity can be assessed by self-rating: Development and validation of the Pain Sensitivity Questionnaire. Pain. 2009;146(1-2):65–74. doi: 10.1016/j.pain.2009.06.020.
    1. Binder A, Stengel M, Klebe O, Wasner G, Baron R. Topical high-concentration (40%) menthol-somatosensory profile of a human surrogate pain model. J Pain. 2011;12(7):764–773. doi: 10.1016/j.jpain.2010.12.013.
    1. Wasner G, Schattschneider J, Binder A, Baron R. Topical menthol--a human model for cold pain by activation and sensitization of C nociceptors. Brain. 2004;127(Pt 5):1159–1171. doi: 10.1093/brain/awh134.
    1. Baumgartner U, Magerl W, Klein T, Hopf HC, Treede RD. Neurogenic hyperalgesia versus painful hypoalgesia: two distinct mechanisms of neuropathic pain. Pain. 2002;96(1-2):141–151. doi: 10.1016/S0304-3959(01)00438-9.
    1. Magerl W, Fuchs PN, Meyer RA, Treede RD. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain. 2001;124(Pt 9):1754–1764. doi: 10.1093/brain/124.9.1754.
    1. Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain. 1999;122(Pt 12):2245–2257. doi: 10.1093/brain/122.12.2245.
    1. De Col R, Maihöfner C. Centrally mediated sensory decline induced by differential C-fiber stimulation. Pain. 2008;138(3):556–564. doi: 10.1016/j.pain.2008.02.005.
    1. Rowbotham MC, Fields HL. The relationship of pain, allodynia and thermal sensation in post-herpetic neuralgia. Brain. 1996;119(Pt 2):347–354. doi: 10.1093/brain/119.2.347.
    1. Gierthmühlen J, Maier C, Baron R, Tölle T, Treede RD, Birbaumer N, Huge V, Koroschetz J, Krumova EK, Lauchart M, Maihöfner C, Richter H. Westermann A; the German Research Network on Neuropathic Pain (DFNS) study group. Sensory signs in complex regional pain syndrome and peripheral nerve injury. Pain. 2012;153(4):765–774. doi: 10.1016/j.pain.2011.11.009.
    1. Oaklander AL, Rissmiller JG, Gelman LB, Zheng L, Chang Y, Gott R. Evidence of focal small-fiber axonal degeneration in complex regional pain syndrome-I (reflex sympathetic dystrophy) Pain. 2006;120(3):235–243. doi: 10.1016/j.pain.2005.09.036.
    1. Krause T, Asseyer S, Geisler F, Fiebach JB, Oeltjenbruns J, Kopf A, Villringer K, Villringer A, Jungehulsing GJ. Chronic sensory stroke with and without central pain is associated with bilaterally distributed sensory abnormalities as detected by Quantitative Sensory Testing. Pain. 2016;157(1):194–202. doi: 10.1097/j.pain.0000000000000354.
    1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824. doi: 10.1038/39807.
    1. Moran MM, McAlexander MA, Bíró T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov. 2011;10(8):601–620. doi: 10.1038/nrd3456.
    1. Callsen MG, Moller AT, Sorensen K, Jensen TS, Finnerup NB. Cold hyposensitivity after topical application of capsaicin in humans. Exp Brain Res. 2008;191(4):447–452. doi: 10.1007/s00221-008-1535-1.
    1. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol. 2005;493(4):596–606. doi: 10.1002/cne.20794.
    1. Okazawa M, Inoue W, Hori A, Hosokawa H, Matsumura K, Kobayashi S. Noxious heat receptors present in cold-sensory cells in rats. Neurosci Lett. 2004;359(1-2):33–36. doi: 10.1016/j.neulet.2004.01.074.
    1. Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res. 2007;178(1):89–98. doi: 10.1007/s00221-006-0712-3.
    1. Attal N, Brasseur L, Chauvin M, Bouhassira D. Effects of single and repeated applications of a eutectic mixture of local anaesthetics (EMLA) cream on spontaneous and evoked pain in post-herpetic neuralgia. Pain. 1999;81(1-2):203–209. doi: 10.1016/S0304-3959(99)00014-7.
    1. Krumova EK, Zeller M, Westermann A, Maier C. Lidocaine patch (5%) produces a selective, but incomplete block of Aδ and C fibers. Pain. 2012;153(2):273–280. doi: 10.1016/j.pain.2011.08.020.
    1. Weinkauf B, Obreja O, Schmelz M, Rukwied R. Differential effects of lidocaine on nerve growth factor (NGF)-evoked heat- and mechanical hyperalgesia in humans. Eur J Pain. 2012;16(4):543–549. doi: 10.1016/j.ejpain.2011.08.004.
    1. Leffler A, Fischer MJ, Rehner D, Kienel S, Kistner K, Sauer SK, Gavva NR, Reeh PW, Nau C. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008;118(2):763–776.
    1. Fuchs PN, Pappagallo M, Meyer RA. Topical EMLA pre-treatment fails to decrease the pain induced by 1% topical capsaicin. Pain. 1999;80(3):637–642. doi: 10.1016/S0304-3959(98)00260-7.
    1. Westermann A, Rönnau AK, Krumova E, Regeniter S, Schwenkreis P, Rolke R, Treede RD, Richter H, Maier C. Pain-associated mild sensory deficits without hyperalgesia in chronic non-neuropathic pain. Clin J Pain. 2011;27(9):782–789. doi: 10.1097/AJP.0b013e31821d8fce.
    1. Shenker NG, Haigh RC, Mapp PI, Harris N, Blake DR. Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man. Rheumatology (Oxford) 2008;47(9):1417–1421. doi: 10.1093/rheumatology/ken251.
    1. Drummond PD, Blockey P. Topically applied capsaicin inhibits sensitivity to touch but not to warmth or heat-pain in the region of secondary mechanical hyperalgesia. Somatosens Mot Res. 2009;26(4):75–81. doi: 10.3109/08990220903296761.
    1. van Wijk G, Veldhuijzen DS. Perspective on diffuse noxious inhibitory controls as a model of endogenous pain modulation in clinical pain syndromes. J Pain. 2010;11(5):408–419. doi: 10.1016/j.jpain.2009.10.009.
    1. Hartline HK, Ratliff F. Inhibitory interaction of receptor units in the eye of Limulus. J Gen Physiol. 1957;40(3):357–376. doi: 10.1085/jgp.40.3.357.
    1. Grill JD, Coghill RC. Transient analgesia evoked by noxious stimulus offset. J Neurophysiol. 2002;87(4):2205–2208. doi: 10.1152/jn.00730.2001.
    1. Yelle MD, Rogers JM, Coghill RC. Offset analgesia: a temporal contrast mechanism for nociceptive information. Pain. 2008;134(1-2):174–186. doi: 10.1016/j.pain.2007.04.014.

Source: PubMed

3
S'abonner