Severe sleep disturbance is associated with executive function impairment in patients with first-episode, treatment-naïve major depressive disorders

Feihuan Cui, Qi Liu, Xiaozhen Lv, Rainer Leonhart, Hongjun Tian, Jing Wei, Kerang Zhang, Gang Zhu, Qiaoling Chen, Gang Wang, Xueyi Wang, Nan Zhang, Yu Huang, Tianmei Si, Xin Yu, Feihuan Cui, Qi Liu, Xiaozhen Lv, Rainer Leonhart, Hongjun Tian, Jing Wei, Kerang Zhang, Gang Zhu, Qiaoling Chen, Gang Wang, Xueyi Wang, Nan Zhang, Yu Huang, Tianmei Si, Xin Yu

Abstract

Background: Sleep disturbance and executive function impairment are common in patients with major depressive disorder (MDD), though the relationship between the two remains unclear. We investigated this association in first-episode, treatment-naïve patients with MDD.

Methods: We analyzed data from 242 patients with MDD. We divided the patients into 2 groups based on sleep disturbance severity and compared the executive function odds ratios between the groups.

Results: A total of 121 pairs of patients were matched (age 39.4 ± 10.1, 70.2% female). After propensity score matching, the odds ratios for cognitive impairment in patients with MDD and severe sleep disturbance were 1.922 (1.068-3.459, P = 0.029, q = 0.044) in executive functioning; 2.023 (1.211-3.379, P = 0.007, q = 0.021) in executive shifting.

Conclusions: Sleep disturbance is associated with executive functioning impairment in first-episode, treatment-naïve patients with MDD. Severe sleep disturbance can be a marker and aid in recognizing executive function impairment in patients with first-episode treatment-naïve MDD. Severe sleep disturbance can be a potential modifiable factor to improve executive function in MDD, as well as an effective measurement to improve cognition for sleep symptom management that should be enforced at initial treatment of first-episode MDD. Further study is required to confirm our results.

Trial registration: ClinicalTrials.gov: NCT02023567 ; registration date: December 2013.

Keywords: Cognitive functioning; Executive functioning; Major depressive disorder; Sleep disturbance.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Zuckerman H, Pan Z, Park C, Brietzke E, Musial N, Shariq AS, Iacobucci M, Yim SJ, Lui L, Rong C, et al. Recognition and treatment of cognitive dysfunction in major depressive disorder. Front Psychiatry. 2018;9:655. doi: 10.3389/fpsyt.2018.00655.
    1. Clark M, DiBenedetti D, Perez V. Cognitive dysfunction and work productivity in major depressive disorder. Expert Rev Pharmacoecon Outcomes Res. 2016;16(4):455–463. doi: 10.1080/14737167.2016.1195688.
    1. Carvalho AF, Miskowiak KK, Hyphantis TN, Kohler CA, Alves GS, Bortolato B, Sales MG, Machado-Vieira R, Berk M, McIntyre RS. Cognitive dysfunction in depression - pathophysiology and novel targets. CNS Neurol Disord Drug Targets. 2014;13(10):1819–1835. doi: 10.2174/1871527313666141130203627.
    1. Conradi HJ, Ormel J, de Jonge P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med. 2011;41(6):1165–1174. doi: 10.1017/S0033291710001911.
    1. Ahern E, Semkovska M. Cognitive functioning in the first-episode of major depressive disorder: a systematic review and meta-analysis. Neuropsychology. 2017;31(1):52–72. doi: 10.1037/neu0000319.
    1. Reppermund S, Ising M, Lucae S, Zihl J. Cognitive impairment in unipolar depression is persistent and non-specific: further evidence for the final common pathway disorder hypothesis. Psychol Med. 2009;39(4):603–614. doi: 10.1017/S003329170800411X.
    1. Simons CJ, Jacobs N, Derom C, Thiery E, Jolles J, van Os J, Krabbendam L. Cognition as predictor of current and follow-up depressive symptoms in the general population. Acta Psychiatr Scand. 2009;120(1):45–52. doi: 10.1111/j.1600-0447.2008.01339.x.
    1. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139(1):81–132. doi: 10.1037/a0028727.
    1. Clark L, Chamberlain SR, Sahakian BJ. Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci. 2009;32(1):57–74. doi: 10.1146/annurev.neuro.31.060407.125618.
    1. Boland EM, Vittengl JR, Clark LA, Thase ME, Jarrett RB. Is sleep disturbance linked to short- and long-term outcomes following treatments for recurrent depression? J Affect Disord. 2020;262:323–332. doi: 10.1016/j.jad.2019.10.033.
    1. Goldstone A, Javitz HS, Claudatos SA, Buysse DJ, Hasler BP, de Zambotti M, Clark DB, Franzen PL, Prouty DE, Colrain IM, Baker FC. Sleep disturbance predicts depression symptoms in early adolescence: initial findings from the adolescent brain cognitive development study. J Adolesc Health. 2020;66(5):567–574. doi: 10.1016/j.jadohealth.2019.12.005.
    1. Stickley A, Leinsalu M, DeVylder JE, Inoue Y, Koyanagi A. Sleep problems and depression among 237 023 community-dwelling adults in 46 low- and middle-income countries. Sci Rep. 2019;9(1):12011. doi: 10.1038/s41598-019-48334-7.
    1. Steiger A, Kimura M. Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res. 2010;44(4):242–252. doi: 10.1016/j.jpsychires.2009.08.013.
    1. Maquet P, Ruby P, Maudoux A, Albouy G, Sterpenich V, Dang-Vu T, Desseilles M, Boly M, Perrin F, Peigneux P, et al. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog Brain Res. 2005;150:219–227. doi: 10.1016/S0079-6123(05)50016-5.
    1. Ling A, Lim ML, Gwee X, Ho RC, Collinson SL, Ng TP. Insomnia and daytime neuropsychological test performance in older adults. Sleep Med. 2016;17:7–12. doi: 10.1016/j.sleep.2015.07.037.
    1. Grau-Rivera O, Operto G, Falcon C, Sanchez-Benavides G, Cacciaglia R, Brugulat-Serrat A, Gramunt N, Salvado G, Suarez-Calvet M, Minguillon C, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults. Alzheimers Res Ther. 2020;12(1):4. doi: 10.1186/s13195-019-0547-3.
    1. Wardle-Pinkston S, Slavish DC, Taylor DJ. Insomnia and cognitive performance: a systematic review and meta-analysis. Sleep Med Rev. 2019;48:101205. doi: 10.1016/j.smrv.2019.07.008.
    1. Cabanel N, Schmidt AM, Fockenberg S, Bruckmann KF, Haag A, Muller MJ, Kundermann B. Evening preference and poor sleep independently affect attentional-executive functions in patients with depression. Psychiatry Res. 2019;281:112533. doi: 10.1016/j.psychres.2019.112533.
    1. Cockshell SJ, Mathias JL. Cognitive deficits in chronic fatigue syndrome and their relationship to psychological status, symptomatology, and everyday functioning. Neuropsychology. 2013;27(2):230–242. doi: 10.1037/a0032084.
    1. Thomas AJ, Gallagher P, Robinson LJ, Porter RJ, Young AH, Ferrier IN, O'Brien JT. A comparison of neurocognitive impairment in younger and older adults with major depression. Psychol Med. 2009;39(5):725–733. doi: 10.1017/S0033291708004042.
    1. van Agtmaal M, Houben A, Pouwer F, Stehouwer C, Schram MT. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis. Jama Psychiat. 2017;74(7):729–739. doi: 10.1001/jamapsychiatry.2017.0984.
    1. Lemos-Miller A, Kearney CA. Depression and ethnicity as intermediary variables among dissociation, trauma-related cognitions, and PTSD symptomatology in youths. J Nerv Ment Dis. 2006;194(8):584–590. doi: 10.1097/.
    1. Dannehl K, Rief W, Euteneuer F. Childhood adversity and cognitive functioning in patients with major depression. Child Abuse Negl. 2017;70:247–254. doi: 10.1016/j.chiabu.2017.06.013.
    1. Withall A, Harris LM, Cumming SR. A longitudinal study of cognitive function in melancholic and non-melancholic subtypes of major depressive disorder. J Affect Disord. 2010;123(1–3):150–157. doi: 10.1016/j.jad.2009.07.012.
    1. Zimmerman ME, Bigal ME, Katz MJ, Brickman AM, Lipton RB. Sleep onset/maintenance difficulties and cognitive function in nondemented older adults: the role of cognitive reserve. J Int Neuropsychol Soc. 2012;18(3):461–470. doi: 10.1017/S1355617711001901.
    1. Rosenstrom T, Jokela M, Puttonen S, Hintsanen M, Pulkki-Raback L, Viikari JS, Raitakari OT, Keltikangas-Jarvinen L. Pairwise measures of causal direction in the epidemiology of sleep problems and depression. PLoS One. 2012;7(11):e50841. doi: 10.1371/journal.pone.0050841.
    1. Bagherzadeh-Azbari S, Khazaie H, Zarei M, Spiegelhalder K, Walter M, Leerssen J, Van Someren E, Sepehry AA, Tahmasian M. Neuroimaging insights into the link between depression and insomnia: a systematic review. J Affect Disord. 2019;258:133–143. doi: 10.1016/j.jad.2019.07.089.
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):56–62. doi: 10.1136/jnnp.23.1.56.
    1. Lv X, Si T, Wang G, Wang H, Liu Q, Hu C, Wang J, Su Y, Huang Y, Jiang H, Yu X. The establishment of the objective diagnostic markers and personalized medical intervention in patients with major depressive disorder: rationale and protocol. BMC Psychiatry. 2016;16(1):240. doi: 10.1186/s12888-016-0953-z.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33.
    1. Wang XD, Wang XL, Ma H. Handbook of mental health assessment scale. Beijing: Journal of Chinese Mental Health; 1999.
    1. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32(1):50–55. doi: 10.1111/j.2044-8341.1959.tb00467.x.
    1. Yu X. Handbook of MATRICS consensus cognitive battery Chinese norm. Beijing: Peking University Medical Press; 2014.
    1. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK, HNRC G. Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsyc. 2004;26(3):307–319. doi: 10.1080/13803390490510031.
    1. Bernstein DP, Fink L, Handelsman L, Foote J, Lovejoy M, Wenzel K, Sapareto E, Ruggiero J. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry. 1994;151(8):1132–1136. doi: 10.1176/ajp.151.8.1132.
    1. Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J. Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia. 2003;41(3):357–370. doi: 10.1016/S0028-3932(02)00167-7.
    1. Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, Salmon E. Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp. 2005;25(4):409–423. doi: 10.1002/hbm.20118.
    1. Shi Y, Li J, Feng Z, Xie H, Duan J, Chen F, Yang H. Abnormal functional connectivity strength in first-episode, drug-naïve adult patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2020;97:109759. doi: 10.1016/j.pnpbp.2019.109759.
    1. Wei Y, Leerssen J, Wassing R, Stoffers D, Perrier J, Van Someren E. Reduced dynamic functional connectivity between salience and executive brain networks in insomnia disorder. J Sleep Res. 2020;29(2):e12953. doi: 10.1111/jsr.12953.
    1. Igazság B, Demetrovics Z, Cserjési R. The developmental trajectory of executive functions and their stress sensitivity in adolescence. Psychiatr Hung. 2019;34(3):300–310.
    1. Dias BF, Rezende LO, Malloy-Diniz LF, Paula JJ. Relationship between visuospatial episodic memory, processing speed and executive function: are they stable over a lifespan? Arq Neuropsiquiatr. 2018;76(2):89–92. doi: 10.1590/0004-282x20170186.
    1. LaClair M, Febo M, Nephew B, Gervais NJ, Poirier G, Workman K, Chumachenko S, Payne L, Moore MC, King JA et al. Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. eNeuro. 2019;6(4):119–54.
    1. Hajali V, Andersen ML, Negah SS, Sheibani V. Sex differences in sleep and sleep loss-induced cognitive deficits: the influence of gonadal hormones. Horm Behav. 2019;108:50–61. doi: 10.1016/j.yhbeh.2018.12.013.
    1. Durairaja A, Fendt M. Orexin deficiency modulates cognitive flexibility in a sex-dependent manner. Genes Brain Behav. 2021;20(3):e12707.
    1. Gaillard A, Fehring DJ, Rossell SL. A systematic review and meta-analysis of behavioural sex differences in executive control. Eur J Neurosci. 2021;53(2):519–42.
    1. Sun J, Walker AJ, Dean B, van den Buuse M, Gogos A. Progesterone: the neglected hormone in schizophrenia? A focus on progesterone-dopamine interactions. Psychoneuroendocrino. 2016;74:126–140. doi: 10.1016/j.psyneuen.2016.08.019.

Source: PubMed

3
S'abonner