Effects of a Personalized VLCKD on Body Composition and Resting Energy Expenditure in the Reversal of Diabetes to Prevent Complications

Lorenzo Romano, Marco Marchetti, Paola Gualtieri, Laura Di Renzo, Meriann Belcastro, Gemma Lou De Santis, Marco Alfonso Perrone, Antonino De Lorenzo, Lorenzo Romano, Marco Marchetti, Paola Gualtieri, Laura Di Renzo, Meriann Belcastro, Gemma Lou De Santis, Marco Alfonso Perrone, Antonino De Lorenzo

Abstract

The reversion of diabetes and the treatment of long-term obesity are difficult challenges. The failure mechanisms of rapid weight loss are mainly related to the wasting of lean mass. This single-arm study aims to evaluate the effects of a very low-calorie ketogenic diet (VLCKD) on body composition and resting energy expenditure in the short term reversal of diabetes mellitus Type 2. For eight weeks, subjects were administered a personalized VLCKD with protein intake based on lean mass and synthetic amino acidic protein supplementation. Each subject was assessed by anthropometry, Dual-energy X-ray Absorptiometry(DXA), bioimpedentiometric analysis (BIA), indirect calorimetry, and biochemical analysis. The main findings were the saving of lean mass, the reduction of abdominal fat mass, restored metabolic flexibility, the maintenance of resting energy expenditure, and the reversion of diabetes. These results highlight how the application of preventive, predictive, personalized, and participative medicine to nutrition may be promising for the prevention of diabetes and enhancement of obesity treatment.

Keywords: VLCKD; body composition; diabetes; indirect calorimetry; lean mass; nutrition; obesity; prevention; resting energy expenditure; reversibility.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Comparison among baseline, four weeks, and eight weeks for waist circumference (cm) and android fat mass (kg). Points sharing the same superscript letter are not significantly different from each other. Statistical significance attributed to results with p < 0.05. Circ: Circumference. FM: Fat Mass; 4W: four weeks; 8W: eight weeks.
Figure 2
Figure 2
Comparison among baseline, four weeks, and eight weeks for whole FM and whole LM. Points sharing the same superscript letter are not significantly different from each other. Statistical significance attributed to results with p < 0.05. FM: Fat Mass; LM: Lean Mass; ECW: Extra Cellular Water; BCM: Body Cell Mass; 4W: 4 weeks; 8W: 8 weeks.
Figure 3
Figure 3
Comparison among baseline, four weeks, and eight weeks for ECW (L) and BCM (kg). Points sharing the same superscript letter are not significantly different from each other. Statistical significance attributed to results with p < 0.05. ECW: Extra Cellular Water; BCM: Body Cell Mass; 4W: 4 weeks; 8W: 8 weeks.
Figure 4
Figure 4
Comparison among baseline, four weeks, and eight weeks for VO2 and VCO2. Points sharing the same superscript letter are not significantly different from each other. Statistical significance attributed to results with p < 0.05. VO2: Volume of Oxygen; CO2: Volume of Carbon Dioxide; mL/MIN: milliliter/minutes; 4W: weeks; 8W: weeks.

References

    1. Mozaffarian D., Angell S.Y., Lang T., Rivera J.A. Role of government policy in nutrition-barriers to and opportunities for healthier eating. BMJ. 2018;361:k2426. doi: 10.1136/bmj.k2426.
    1. GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–1972. doi: 10.1016/S0140-6736(19)30041-8.
    1. What Is Diabetes. [(accessed on 10 April 2019)]; Available online: .
    1. Thomas C.E., Mauer E.A., Shukla A.P., Rathi S., Aronne L.J. Low adoption of weight loss medications: A comparison of prescribing patterns of antiobesity pharmacotherapies and SGLT2s. Obesity (Silver Spring) 2016;24:1955–1961. doi: 10.1002/oby.21533.
    1. Avolio E., Gualtieri P., Romano L., Pecorella C., Ferraro S., Di Renzo L., De Lorenzo A. Obesity and body composition in man and woman: Associated diseases and new role of gut microbiota. Curr. Med. Chem. 2019;25 doi: 10.2174/0929867326666190326113607.
    1. Lehtisalo J., Lindström J., Ngandu T., Kivipelto M., Ahtiluoto S., Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Eriksson J.G., Uusitupa M., Tuomilehto J., et al. Diabetes, glycaemia, and cognition-a secondary analysis of the Finnish Diabetes Prevention Study. Diabetes Metab. Res. Rev. 2016;32:102–110. doi: 10.1002/dmrr.2679.
    1. Taylor R., Al-Mrabeh A., Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 2019;13:S2213–S8587. doi: 10.1016/S2213-8587(19)30076-2.
    1. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C., Taylor R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54:2506–2514. doi: 10.1007/s00125-011-2204-7.
    1. Steven S., Hollingsworth K.G., Al-Mrabeh A., Avery L., Aribisala B., Caslake M., Taylor R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care. 2016;39:808–815. doi: 10.2337/dc15-1942.
    1. McMurray R.G., Soares J., Caspersen C.J., McCurdy T. Examining variations of resting metabolic rate of adults: A public health perspective. Med. Sci. Sports Exerc. 2014;46:1352–1318. doi: 10.1249/MSS.0000000000000232.
    1. Müller M.J., Bosy-Westphal A., Kutzner D., Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: Recent lessons from imaging technologies. Obes. Rev. 2002;3:113–122. doi: 10.1046/j.1467-789X.2002.00057.x.
    1. Grattan B.J., Jr., Connolly-Schoonen J. Addressing weight loss recidivism: A clinical focus on metabolic rate and the psychological aspects of obesity. ISRN Obes. 2012;2012:567530. doi: 10.5402/2012/567530.
    1. Dulloo A.G., Jacquet J., Miles-Chan J.L., Schutz Y. Passive and active roles of fat-free mass in the control of energy intake and body composition regulation. Eur. J. Clin. Nutr. 2017;71:353–357. doi: 10.1038/ejcn.2016.256.
    1. Dulloo A.G., Jacquet J., Girardier L. Poststarvation hyperphagia and body fat overshooting in humans: A role for feedback signals from lean and fat tissues. Am. J. Clin. Nutr. 1997;65:717–723. doi: 10.1093/ajcn/65.3.717.
    1. Rondanelli M., Talluri J., Peroni G., Donelli C., Guerriero F., Ferrini K., Riggi E., Sauta E., Perna S., Guido D. Beyond Body Mass Index. Is the Body Cell Mass Index (BCMI) a useful prognostic factor to describe nutritional, inflammation and muscle mass status in hospitalized elderly? Body Cell Mass Index links in elderly. Clin. Nutr. 2018;37:934–939. doi: 10.1016/j.clnu.2017.03.021.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A., Proietto J. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur. J. Clin. Nutr. 2013;67:759. doi: 10.1038/ejcn.2013.90.
    1. Trumbo P., Schlicker S., Yates A.A., Poos M. Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2003;102:1621–1630. doi: 10.1016/S0002-8223(02)90346-9. Erratum in 2002, 103, 563.
    1. Houston D.K., Nicklas B.J., Ding J., Harris T.B., Tylavsky F.A., Newman A.B., Lee J.S., Sahyoun N.R., Visser M., Kritchevsky S.B., et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008;87:150–155. doi: 10.1093/ajcn/87.1.150.
    1. Campbell W.W., Trappe T.A., Wolfe R.R., Evans W.J. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2001;56:M373–M380. doi: 10.1093/gerona/56.6.M373.
    1. Geisler C., Prado C.M., Müller M.J. Inadequacy of Body Weight-Based Recommendations for Individual Protein Intake-Lessons from Body Composition Analysis. Nutrients. 2016;9:23. doi: 10.3390/nu9010023.
    1. Colica C., Avolio E., Bollero P., Costa de Miranda R., Ferraro S., Sinibaldi Salimei P., De Lorenzo A., Di Renzo L. Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediat. Inflamm. 2017;2017:5650627. doi: 10.1155/2017/5650627.
    1. Colica C., Merra G., Gasbarrini A., De Lorenzo A., Cioccoloni G., Gualtieri P., Perrone M.A., Bernardini S., Bernardo V., Di Renzo L., et al. Efficacy and safety of very-low-calorie ketogenic diet: A double blind randomized crossover study. Eur. Rev. Med. Pharmacol. Sci. 2017;21:2274–2289.
    1. Merra G., Gratteri S., De Lorenzo A., Barrucco S., Perrone M.A., Avolio E., Bernardini S., Marchetti M., Di Renzo L. Effects of very-low-calorie diet on body composition, metabolic state, and genes expression: A randomized double-blind placebo-controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2017;21:329–345.
    1. Merra G., Miranda R., Barrucco S., Gualtieri P., Mazza M., Moriconi E., Marchetti M., Chang T.F., De Lorenzo A., Di Renzo L. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: A pilot double-blind study. Eur. Rev. Med. Pharmacol. Sci. 2016;20:2613–2621.
    1. Steven S., Taylor R. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration Type 2 diabetes. Diabet. Med. 2015;32:1149–1155. doi: 10.1111/dme.12722.
    1. De Lorenzo A., Siclari M., Gratteri S., Romano L., Gualtieri P., Marchetti M., Merra G., Colica C. Developing and cross-validation of new equations to estimate fat mass in Italian population. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2513–2524.
    1. Costa de Miranda R., Di Lorenzo N., Andreoli A., Romano L., De Santis G.L., Gualtieri P., De Lorenzo A. Body composition and bone mineral density in Huntington’s disease. Nutrition. 2019;59:145–149. doi: 10.1016/j.nut.2018.08.005.
    1. Colica C., Di Renzo L., Trombetta D., Smeriglio A., Bernardini S., Cioccoloni G., Costa de Miranda R., Gualtieri P., Sinibaldi Salimei P., De Lorenzo A. Antioxidant Effects of a Hydroxytyrosol-Based Pharmaceutical Formulation on Body Composition, Metabolic State, and Gene Expression: A Randomized Double-Blinded, Placebo-Controlled Crossover Trial. Oxid. Med. Cell. Longev. 2017;2017:2473495. doi: 10.1155/2017/2473495.
    1. De Lorenzo A., Di Renzo L., Morini P., de Miranda R.C., Romano L., Colica C. New equations to estimate resting energy expenditure in obese adults from body composition. Acta Diabetol. 2018;55:59–66. doi: 10.1007/s00592-017-1061-3.
    1. Lean M.E., Leslie W.S., Barnes A.C., Brosnahan N., Thom G., McCombie L., Peters C., Zhyzhneuskaya S., Al-Mrabeh A., Hollingsworth K.G., et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7:344–355. doi: 10.1016/S2213-8587(19)30068-3.
    1. Westerterp-Plantenga M.S., Nieuwenhuizen A., Tome D., Soenen S., Westerterp K.R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 2009;29:21–41. doi: 10.1146/annurev-nutr-080508-141056.
    1. Veldhorst M., Smeets A., Soenen S., Hochstenbach-Waelen A., Hursel R., Diepvens K., Lejeune M., Luscombe-Marsh N., Westerterp-Plantenga M. Protein-induced satiety: Effects and mechanisms of different proteins. Physiol. Behav. 2008;94:300–307. doi: 10.1016/j.physbeh.2008.01.003.
    1. Paoli A., Cenci L., Fancelli M., Parmagnani A., Fratter A., Cucchi A., Bianco A. Ketogenic diet and phytoextracts. Comparison of the efficacy of mediterranean, zone and tisanoreica diet on some health risk factors. Agro Food Ind. Hi-Tech. 2010;21:24–29.
    1. Acconcia M.C., Caretta Q., Romeo F., Borzi M., Perrone M.A., Sergi D., Chiarotti F., Calabrese C.M., Sili Scavalli A., Gaudio C. Meta-analyses on intra-aortic balloon pump in cardiogenic shock complicating acute myocardial infarction may provide biased results. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2405–2414.
    1. Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J., Himmelfarb C.D., Khera A., Lloyd-Jones D., McEvoy J.W., et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019;73 doi: 10.1161/CIR.0000000000000678.
    1. Guthrie N., Runyan J.W., Clark G., Marvin O. Carbohydrate Intake and Respiratory Quotient. Nutr. Rev. 1964;22:105–107.
    1. Steven S., Carey P.E., Small P.K., Taylor R. Reversal of Type 2 diabetes after bariatric surgery is determined by the degree of achieved weight loss in both short- and long-duration diabetes. Diabet. Med. 2015;32:47–53. doi: 10.1111/dme.12567.
    1. Di Renzo L., Carbonelli M.G., Bianchi A., Iacopino L., Fiorito R., Di Daniele N., De Lorenzo A. Body composition changes after laparoscopic adjustable gastric banding: What is the role of -174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int. J. Obes. (Lond.) 2012;36:369–378. doi: 10.1038/ijo.2011.132.
    1. Gomez-Arbelaez D., Bellido D., Castro A.I., Ordoñez-Mayan L., Carreira J., Galban C., Martinez-Olmos M.A., Crujeiras A.B., Sajoux I., Casanueva F.F. Body Composition Changes After Very-Low-Calorie Ketogenic Diet in Obesity Evaluated by 3 Standardized Methods. J. Clin. Endocrinol. Metab. 2017;102:488–498. doi: 10.1210/jc.2016-2385.
    1. Overweight and Obesity. [(accessed on 10 April 2019)]; Available online:
    1. De Lorenzo A., Romano L., Di Renzo L., Gualtieri P., Salimei C., Carrano E., Rampello T., de Miranda R.C. Triponderal mass index rather than body mass index: An indicator of high adiposity in Italian children and adolescents. Nutrition. 2019;60:41–47. doi: 10.1016/j.nut.2018.09.007.
    1. Kolanowski J., Bodson A., Desmecht P., Bemelmans S., Stein F., Crabbe J. On the relationship between ketonuria and natriuresis during fasting and upon refeeding in obese patients. Eur. J. Clin. Investig. 1978;8:277–282. doi: 10.1111/j.1365-2362.1978.tb00842.x.
    1. Frigolet M.E., Ramos Barragán V.E., Tamez González M. Low-carbohydrate diets: A matter of love or hate. Ann. Nutr. Metab. 2011;58:320–334. doi: 10.1159/000331994.
    1. Hall K.D., Chen K.Y., Guo J., Lam Y.Y., Leibel R.L., Mayer L.E., Reitman M.L., Rosenbaum M., Smith S.R., Walsh B.T., et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016;104:324–333. doi: 10.3945/ajcn.116.133561.
    1. Bray G.A., Kim K.K., Wilding J.P.H., World Obesity Federation Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017;18:715–723. doi: 10.1111/obr.12551.
    1. Pi-Sunyer F.X., Becker D.M., Bouchard C., Carleton R.A., Colditz G.A., Dietz W.H., Foreyt J.P., Garrison R.J., Grundy S.M., Hansen B.C., et al. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: Executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am. J. Clin. Nutr. 1998;68:899–917.
    1. National Institute for Health and Care Excellence Obesity: Identification, assessment and management of overweight and obesity in children, young people and adults. In NICE Clinical Guidelines; Puo, C., Ed.; 2014. [(accessed on 10 April 2016)]; Available online: .
    1. Goodpaster B.H., Sparks L.M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017;25:1027–1036. doi: 10.1016/j.cmet.2017.04.015.
    1. Leibel R.L., Rosenbaum M., Hirsch J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 1995;332:621–628. doi: 10.1056/NEJM199503093321001. Erratum in 1995, 333, 999.
    1. Carrasco F., Papapietro K., Csendes A., Salazar G., Echenique C., Lisboa C., Díaz E., Rojas J. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes. Surg. 2007;17:608–616. doi: 10.1007/s11695-007-9117-z. Erratum in 2007, 17, 996.
    1. Lim E.L., Hollingsworth K.G., Smith F.E., Thelwall P.E., Taylor R. Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates. Clin. Sci. (Lond.) 2011;121:169–177. doi: 10.1042/CS20100611.
    1. Lean M.E., Leslie W.S., Barnes A.C., Brosnahan N., Thom G., McCombie L., Peters C., Zhyzhneuskaya S., Al-Mrabeh A., Hollingsworth K.G., et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet. 2018;391:541–551. doi: 10.1016/S0140-6736(17)33102-1.
    1. Giordani I., Malandrucco I., Donno S., Picconi F., Di Giacinto P., Di Flaviani A., Chioma L., Frontoni S. Acute caloric restriction improves glomerular filtration rate in patients with morbid obesity and type 2 diabetes. Diabetes Metab. 2014;40:158–160. doi: 10.1016/j.diabet.2013.12.006.
    1. Garlick P.J. The nature of human hazards associated with excessive intake of amino acids. J. Nutr. 2004;134:1633S–1639S. doi: 10.1093/jn/134.6.1633S.
    1. Imamura W., Yoshimura R., Takai M., Yamamura J., Kanamoto R., Kato H. Adverse effects of excessive leucine intake depend on dietary protein intake: A transcriptomic analysis to identify useful biomarkers. J. Nutr. Sci. Vitaminol. 2013;59:45–55. doi: 10.3177/jnsv.59.45.

Source: PubMed

3
S'abonner