Cardiorespiratory Fitness, Blood Pressure and Ethnicity Are Related to Salivary Cortisol Responses after an Exercise Test in Children: The ExAMIN Youth SA Study

Sabrina Köchli, Shani Botha-Le Roux, Aletta Sophia Uys, Ruan Kruger, Sabrina Köchli, Shani Botha-Le Roux, Aletta Sophia Uys, Ruan Kruger

Abstract

Background: Childhood elevated circulatory stress mediators such as cortisol seem to play an important role in the development of hypertension and metabolic disorders later in life. Little is known about the association of body composition, cardiorespiratory fitness (CRF), blood pressure (BP) and ethnicity with cortisol reactivity in young children.

Methods: In this cross-sectional study, 324 black and 227 white school children (aged 7.4 ± 1.0 years) were screened for salivary cortisol reactivity, body mass index, BP and CRF (shuttle run) by standardised assessments for children.

Results: Children in the lower cortisol reactivity percentile (<25th) had a higher heart rate (87.0 ± 12.9 bpm) and a lower CRF (3.1 ± 1.3 stages) compared to children in the upper (>25th) percentile (86.2 ± 11.5 bpm and 3.5 ± 1.7 stages, respectively). At baseline, children of black ethnicity had a higher cortisol level (p < 0.001). Immediately before the exercise test, no associations of obesity, BP, CRF and ethnicity with cortisol levels were found. In analysis of covariance (ANCOVA) we found that low CRF, high BP and black ethnicity were independently associated with lower cortisol reactivity by performing the shuttle run test (p < 0.01).

Conclusion: Low CRF and high BP were associated with lower cortisol reactivity after a cardiorespiratory exercise test. Black children showed a lower cortisol reactivity which may contribute to the earlier onset of hypertension reported in black compared to white populations. Primary prevention programs need to focus on improving physical fitness to reduce the growing prevalence of cardiometabolic disorders during childhood.

Trial registration: ClinicalTrials.gov NCT04056377.

Keywords: childhood obesity; ethnicity; physical fitness; salivary cortisol.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the study population.
Figure 2
Figure 2
Comparison of cortisol reactivity in relation to (A) blood pressure categories, (B) tertiles of cardiorespiratory fitness and (C) black and white participants.

References

    1. Vrijkotte T.G., van Doornen L.J., de Geus E.J. Effects of Work Stress on Ambulatory Blood Pressure, Heart Rate, and Heart Rate Variability. Hypertension (Dallas Tex 1979) 2000;35:880–886. doi: 10.1161/01.HYP.35.4.880.
    1. Tomiyama A.J. Stress and Obesity. Annu. Rev. Psychol. 2019;70:703–718. doi: 10.1146/annurev-psych-010418-102936.
    1. Charmandari E., Tsigos C., Chrousos G. Endocrinology of the Stress Response. Annu. Rev. Physiol. 2005;67:259–284. doi: 10.1146/annurev.physiol.67.040403.120816.
    1. Yaribeygi H., Panahi Y., Sahraei H., Johnston T.P., Sahebkar A. The Impact of Stress on Body Function: A Review. EXCLI J. 2017;16:1057–1072. doi: 10.17179/excli2017-480.
    1. McEwen B.S., Wingfield J.C. The Concept of Allostasis in Biology and Biomedicine. Horm. Behav. 2003;43:2–15. doi: 10.1016/S0018-506X(02)00024-7.
    1. Charmandari E., Kino T., Souvatzoglou E., Chrousos G.P. Pediatric Stress: Hormonal Mediators and Human Development. Horm. Res. 2003;59:161–179. doi: 10.1159/000069325.
    1. Pervanidou P., Chrousos G.P. Metabolic Consequences of Stress during Childhood and Adolescence. Metabolism. 2012;61:611–619. doi: 10.1016/j.metabol.2011.10.005.
    1. Teicher M.H., Andersen S.L., Polcari A., Anderson C.M., Navalta C.P. Developmental Neurobiology of Childhood Stress and Trauma. Psychiatr. Clin. N. Am. 2002;25:397–426, vii–viii. doi: 10.1016/S0193-953X(01)00003-X.
    1. McEwen B.S. Understanding the Potency of Stressful Early Life Experiences on Brain and Body Function. Metabolism. 2008;57:S11–S15. doi: 10.1016/j.metabol.2008.07.006.
    1. Jessop D.S., Turner-Cobb J.M. Measurement and Meaning of Salivary Cortisol: A Focus on Health and Disease in Children. Stress. 2008;11:1–14. doi: 10.1080/10253890701365527.
    1. Chrousos G.P. The Role of Stress and the Hypothalamic-Pituitary-Adrenal Axis in the Pathogenesis of the Metabolic Syndrome: Neuro-Endocrine and Target Tissue-Related Causes. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000;24(Suppl. 2):S50–S55. doi: 10.1038/sj.ijo.0801278.
    1. Wirix A.J., Finken M.J., von Rosenstiel-Jadoul I.A., Heijboer A.C., Nauta J., Groothoff J.W., Chinapaw M.J., Kist-van Holthe J.E. Is There an Association Between Cortisol and Hypertension in Overweight or Obese Children? J. Clin. Res. Pediatr. Endocrinol. 2017;9:344–349. doi: 10.4274/jcrpe.4802.
    1. Yu T., Zhou W., Wu S., Liu Q., Li X. Evidence for Disruption of Diurnal Salivary Cortisol Rhythm in Childhood Obesity: Relationships with Anthropometry, Puberty and Physical Activity. BMC Pediatr. 2020;20:381. doi: 10.1186/s12887-020-02274-8.
    1. Wood C.J., Clow A., Hucklebridge F., Law R., Smyth N. Physical Fitness and Prior Physical Activity Are Both Associated with Less Cortisol Secretion during Psychosocial Stress. Anxiety Stress Coping. 2018;31:135–145. doi: 10.1080/10615806.2017.1390083.
    1. Heijsman S.M., Koers N.F., Bocca G., van der Veen B.S., Appelhof M., Kamps A.W.A. Non-Invasive Measurement of Adrenal Response after Standardized Exercise Tests in Prepubertal Children. J. Pediatr. Endocrinol. Metab. JPEM. 2012;25:471–478. doi: 10.1515/jpem-2012-0054.
    1. Rosengren A., Hawken S., Ounpuu S., Sliwa K., Zubaid M., Almahmeed W.A., Blackett K.N., Sitthi-amorn C., Sato H., Yusuf S., et al. Association of Psychosocial Risk Factors with Risk of Acute Myocardial Infarction in 11119 Cases and 13648 Controls from 52 Countries (the INTERHEART Study): Case-Control Study. Lancet Lond. Engl. 2004;364:953–962. doi: 10.1016/S0140-6736(04)17019-0.
    1. Malan L., Hamer M., Schlaich M.P., Lambert G.W., Harvey B.H., Reimann M., Ziemssen T., de Geus E.J.C.N., Huisman H.W., van Rooyen J.M., et al. Facilitated Defensive Coping, Silent Ischaemia and ECG Left-Ventricular Hypertrophy: The SABPA Study. J. Hypertens. 2012;30:543–550. doi: 10.1097/HJH.0b013e32834fcf82.
    1. Kruger R., Monyeki M.A., Schutte A.E., Smith W., Mels C.M.C., Kruger H.S., Pienaar A.E., Gafane-Matemane L.F., Breet Y., Lammertyn L., et al. The Exercise, Arterial Modulation and Nutrition in Youth South Africa Study (ExAMIN Youth SA) Front. Pediatr. 2020;8:212. doi: 10.3389/fped.2020.00212.
    1. Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P., STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet Lond. Engl. 2007;370:1453–1457. doi: 10.1016/S0140-6736(07)61602-X.
    1. Flynn J.T., Kaelber D.C., Baker-Smith C.M., Blowey D., Carroll A.E., Daniels S.R., de Ferranti S.D., Dionne J.M., Falkner B., Flinn S.K., et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140:e20171904. doi: 10.1542/peds.2017-1904.
    1. Blair J., Adaway J., Keevil B., Ross R. Salivary Cortisol and Cortisone in the Clinical Setting. Curr. Opin. Endocrinol. Diabetes Obes. 2017;24:161–168. doi: 10.1097/MED.0000000000000328.
    1. Da Silva V.S., Vieira M.F.S., da Silva V.S., Vieira M.F.S. International Society for the Advancement of Kinanthropometry (ISAK) Global: International Accreditation Scheme of the Competent Anthropometrist. Rev. Bras. Cineantropometria Desempenho Hum. 2020;22 doi: 10.1590/1980-0037.2020v22e70517.
    1. Kelishadi R., Mirmoghtadaee P., Najafi H., Keikha M. Systematic Review on the Association of Abdominal Obesity in Children and Adolescents with Cardio-Metabolic Risk Factors. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2015;20:294–307.
    1. Ashwell M., Hsieh S.D. Six Reasons Why the Waist-to-Height Ratio Is a Rapid and Effective Global Indicator for Health Risks of Obesity and How Its Use Could Simplify the International Public Health Message on Obesity. Int. J. Food Sci. Nutr. 2005;56:303–307. doi: 10.1080/09637480500195066.
    1. Bös K., Wohlmann R. Allgemeiner Sportmotorischer Test <AST 6-11> zur Diagnose der konditionellen und koordinativen Leistungsfaehigket. Sportunterricht. 1987;36:S145–S156.
    1. van Mechelen W., Hlobil H., Kemper H.C. Validation of Two Running Tests as Estimates of Maximal Aerobic Power in Children. Eur. J. Appl. Physiol. 1986;55:503–506. doi: 10.1007/BF00421645.
    1. Nilsson P. Early vascular aging (EVA): Consequences and prevention. Vasc. Health Risk Manag. 2008;4:547–552. doi: 10.2147/VHRM.S1094.
    1. Lissak G. Adverse Physiological and Psychological Effects of Screen Time on Children and Adolescents: Literature Review and Case Study. Environ. Res. 2018;164:149–157. doi: 10.1016/j.envres.2018.01.015.
    1. Wallenius M., Hirvonen A., Lindholm H., Rimpela A., Nygard C.-H., Saarni L., Punamaki R.-L. Salivary Cortisol in Relation to the Use of Information and Communication Technology (ICT) in School-Aged Children. Psychology. 2010;1:88–95. doi: 10.4236/psych.2010.12012.
    1. Nguyen-Michel S.T., Unger J.B., Hamilton J., Spruijt-Metz D. Associations between Physical Activity and Perceived Stress/Hassles in College Students. Stress Health. 2006;22:179–188. doi: 10.1002/smi.1094.
    1. Papafotiou C., Christaki E., van den Akker E.L.T., Wester V.L., Apostolakou F., Papassotiriou I., Chrousos G.P., Pervanidou P. Hair Cortisol Concentrations Exhibit a Positive Association with Salivary Cortisol Profiles and Are Increased in Obese Prepubertal Girls. Stress (Amst. Neth.) 2017;20:217–222. doi: 10.1080/10253890.2017.1303830.
    1. Köchli S., Endes K., Steiner R., Engler L., Infanger D., Schmidt-Trucksäss A., Zahner L., Hanssen H. Obesity, High Blood Pressure, and Physical Activity Determine Vascular Phenotype in Young Children. Hypertension (Dallas Tex 1979) 2019;73:153–161. doi: 10.1161/HYPERTENSIONAHA.118.11872.
    1. Cornelissen V.A., Verheyden B., Aubert A.E., Fagard R.H. Effects of Aerobic Training Intensity on Resting, Exercise and Post-Exercise Blood Pressure, Heart Rate and Heart-Rate Variability. J. Hum. Hypertens. 2010;24:175–182. doi: 10.1038/jhh.2009.51.
    1. Rodriguez-Ayllon M., Cadenas-Sánchez C., Estévez-López F., Muñoz N.E., Mora-Gonzalez J., Migueles J.H., Molina-García P., Henriksson H., Mena-Molina A., Martínez-Vizcaíno V., et al. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. (Auckl. NZ) 2019;49:1383–1410. doi: 10.1007/s40279-019-01099-5.
    1. Hamer M., Steptoe A. Cortisol Responses to Mental Stress and Incident Hypertension in Healthy Men and Women. J. Clin. Endocrinol. Metab. 2012;97:E29–E34. doi: 10.1210/jc.2011-2132.
    1. Wright B.J., O’Brien S., Hazi A., Kent S. Increased Systolic Blood Pressure Reactivity to Acute Stress Is Related with Better Self-Reported Health. Sci. Rep. 2014;4:1–5. doi: 10.1038/srep06882.
    1. Carroll D., Phillips A.C., Der G. Body Mass Index, Abdominal Adiposity, Obesity, and Cardiovascular Reactions to Psychological Stress in a Large Community Sample. Psychosom. Med. 2008;70:653–660. doi: 10.1097/PSY.0b013e31817b9382.
    1. Mokwatsi G.G., Schutte A.E., Kruger R. Ethnic Differences Regarding Arterial Stiffness of 6–8-Year-Old Black and White Boys. J. Hypertens. 2017;35:960–967. doi: 10.1097/HJH.0000000000001267.
    1. Ramamoorthy S., Cidlowski J. Corticosteroids-Mechanisms of Action in Health and Disease. Rheum. Dis. Clin. N. Am. 2016;42:15–31. doi: 10.1016/j.rdc.2015.08.002.
    1. Sergio G. Exploring the complex relations between inflammation and aging (inflamm-aging): Anti-inflamm-aging remodelling of inflamm—Aging, from robustness to frailty. Inflamm. Res. 2008;57:558–563. doi: 10.1007/s00011-008-7243-2.
    1. Blum A., Maser E. Enzymology and molecular biology of glucocorticoid metabolism in humans. Porg. Nucleic Res. Mol. Biol. 2003;75:173–216.
    1. Brydon L., O’Donnell K., Wright C.E., Wawrzyniak A.J., Wardle J., Steptoe A. Circulating Leptin and Stress-Induced Cardiovascular Activity in Humans. Obesity. 2008;16:2642–2647. doi: 10.1038/oby.2008.415.
    1. Nina E., Markus S., Anuradha A., David K., Murray E. Interactions Between Leptin and the Human Sympathetic Nervous System. Hypertension. 2003;41:1072–1079. doi: 10.1161/01.HYP.0000066289.17754.49.
    1. Gubelmann C., Kuehner C., Vollenweider P., Marques-Vidal P. Association of Activity Status and Patterns with Salivary Cortisol: The Population-Based CoLaus Study. Eur. J. Appl. Physiol. 2018;118:1507–1514. doi: 10.1007/s00421-018-3881-4.
    1. Karstoft K., Pedersen B.K. Exercise and Type 2 Diabetes: Focus on Metabolism and Inflammation. Immunol. Cell Biol. 2016;94:146–150. doi: 10.1038/icb.2015.101.
    1. Mücke M., Ludyga S., Colledge F., Gerber M. Influence of Regular Physical Activity and Fitness on Stress Reactivity as Measured with the Trier Social Stress Test Protocol: A Systematic Review. Sports Med. (Auckl. NZ) 2018;48:2607–2622. doi: 10.1007/s40279-018-0979-0.
    1. Stergiou G.S., Ioanna B., Christina A., Andriani V., Anastasios K., Angeliki N. Reproducibility of Office and Out-of-Office Blood Pressure Measurements in Children. Hypertension. 2021;77:993–1000. doi: 10.1161/HYPERTENSIONAHA.120.16531.

Source: PubMed

3
S'abonner