The repertoire and features of human platelet microRNAs

Hélène Plé, Patricia Landry, Ashley Benham, Cristian Coarfa, Preethi H Gunaratne, Patrick Provost, Hélène Plé, Patricia Landry, Ashley Benham, Cristian Coarfa, Preethi H Gunaratne, Patrick Provost

Abstract

Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA) transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs) resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5' shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. The small RNA profile of…
Figure 1. The small RNA profile of human platelets.
(A) Size distribution of usable reads detected in each of the platelet RNA pool 1 and 2. Most of the RNA sequences are 21 to 23 nucleotides (nt) in length, representing 88% and 83% of the sequences obtained from pool 1 and pool 2, respectively. (B) Classification of the small RNA species isolated and sequenced from human platelet RNA pool 1 and 2. The proportion of sequences (%) matching to each RNA category is shown. MicroRNAs represent approximately 80% of the small RNA species between 18 and 30 nt in length in human platelets.
Figure 2. The annotated microRNA profile of…
Figure 2. The annotated microRNA profile of human platelets.
(A) The HTS profiling of platelet microRNAs, which is shown in order of decreasing number of reads. (B) Distribution of the 15 most abundant mature microRNA families detected in human platelets. The let-7 microRNA family represented 48% of a total of 492 different mature microRNAs, whereas the 15 most abundant microRNAs accounted for more than 90% of all platelet microRNAs.
Figure 3. Post-transcriptional modifications of platelet microRNAs.
Figure 3. Post-transcriptional modifications of platelet microRNAs.
(A) The relative frequency of nucleotide mutation ordered by position on the mature microRNA sequences. The majority of the nucleotide modifications were observed at the 3′ end of microRNAs, whereas the sequence of their seed region was relatively well preserved. (B) Analysis of post-transcriptional modifications affecting two highly expressed platelet microRNAs, miR-223-3p and let-7f-5p. Whereas miR-223-3p showed preferential uridylation, let-7f-5p exhibited predominant adenylation. These modifications represented 29% and 13% of the expressed forms of miR-223-3p and let-7f-5p, respectively. (C) Prevalence of the modifications observed in microRNAs that displayed more than 10% modified sequences in abundance. MicroRNAs for which adenylated/uridylated sequences were at least 10 times more abundant than other modifications were classified as predominant adenylated/uridylated microRNAs. Similar level (e.g. within a 10-fold range) of adenylated and uridylated forms were detected for the majority (56%) of microRNAs. Exclusive or predominant adenylation was observed for 43% of the 5p-microRNAs as compared to 12% of the 3p-microRNAs. On the contrary, exclusive or predominant uridylation was more frequent in 3p-microRNAs (27%), as compared to 5p-microRNA (7%).
Figure 4. Platelets possess microRNA terminal nucleotidyltransferase…
Figure 4. Platelets possess microRNA terminal nucleotidyltransferase activity.
(A–B) Uridylation (A) and adenylation (B) assays were performed by incubating synthetic miR-223 or let-7a mature microRNAs or microRNA duplexes with protein extracts, prepared from Meg-01 cells or platelets isolated from 3 healthy volunteers, in the presence of α-32P-labeled UTP or ATP respectively, at 30°C for 90 min. Uridylated or adenylated forms of microRNAs were detected by denaturing PAGE and autoradiography. (C) Western blot detection of TUT4 uridyltransferase (left panel) and GLD2 adenyltransferase (right panel) enzymes in Meg-01 and platelet extracts using anti-TUT4 and anti-GLD2 antibodies, respectively.
Figure 5. Detection of multiple microRNA isoforms…
Figure 5. Detection of multiple microRNA isoforms in human platelets.
The expression level of the main isoforms of miR-140-3p are shown. The expected mature microRNA sequence, as retrieved from miRBase, is highlighted in bold and does not correspond to the most frequently encountered isoform. As shown on the left, most of the miR-140-3p isoforms may result from a combination of imprecise processing by Drosha and/or Dicer, including the most abundant, whose cleavage sites on the pre-microRNA species are shifted towards the 3′ end by a single nucleotide. Of notice 2 major miR-140-3p isomiRs population coexist in platelets depending on 5′clivage by Dicer, either at the canonical position (blue bars) or harboring a 1 nt cleavage shift (red bars).
Figure 6. Redirection of platelet miR-140-3p targeting…
Figure 6. Redirection of platelet miR-140-3p targeting upon a 1-nt shift of the 5′ cleavage site.
(A) mRNA target prediction for the reference mature miR-140-3p sequence and the miR-140-3p isomiR harboring a 1-nt 5′ shift using TargetScan. The reference isomiR potentially regulates 240 different mRNA targets, whereas the shifted isomiR potentially regulates 367 mRNA targets. Notably, only 50 of these mRNAs are predicted to be regulated by both forms of miR-140-3p. (B) Experimental validation of the target specificity of the 1-nt 5′ shifted isomiR for CAP1 mRNA. HEK 293 cells were co-transfected with miR-140 microRNA duplexes, containing either the reference microRNA sequence (Reference) or the most abundant 1-nt 5′ shifted isomiR (Shifted), and a reporter gene construct in which the adenylate cyclase-associated protein 1 (CAP1) 3′UTR was inserted downstream of the Rluc reporter gene. Base pairing complementarity between miR-140-3p microRNAs and their binding sites is shown in the upper panel. Base pairing involving the microRNA seed region is highlighted in color. The blue X denotes the loss of base pairing of nt 2 of the miR-140-3p reference isoform, which may explain its lower efficiency in regulating CAP1 mRNA 3′UTR expression. Rluc and Fluc activities were measured, and the values were normalized to those obtained with a non-relevant RNA duplex (n = 3 to 4 experiments, in duplicate) (lower panel). ** p

References

    1. Roth GJ, Hickey MJ, Chung DW, Hickstein DD (1989) Circulating human blood platelets retain appreciable amounts of poly (A)+ RNA. Biochem Biophys Res Commun 160: 705–710.
    1. Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H (2003) Messenger RNA profiling of human platelets by microarray hybridization. Thromb Haemost 90: 738–748.
    1. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, et al. (2003) Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 101: 2285–2293.
    1. McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, et al. (2004) Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3: 133–144.
    1. Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, et al. (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118: e101–111.
    1. Ts'ao CH (1971) Rough endoplasmic reticulum and ribosomes in blood platelets. Scand J Haematol 8: 134–140.
    1. Kieffer N, Guichard J, Farcet JP, Vainchenker W, Breton-Gorius J (1987) Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem 164: 189–195.
    1. Booyse FM, Rafelson ME Jr (1968) Studies on human platelets. I. synthesis of platelet protein in a cell-free system. Biochim Biophys Acta 166: 689–697.
    1. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, et al. (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16: 961–966.
    1. Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, et al. (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117: 5189–5197.
    1. Osman A, Falker K (2011) Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 22: 433–441.
    1. Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117: 5289–5296.
    1. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351–379.
    1. Perron MP, Provost P (2008) Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci 13: 2537–2547.
    1. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610.
    1. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234.
    1. Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, et al. (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8: 369–378.
    1. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659.
    1. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, et al. (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327: 580–583.
    1. Risitano A, Beaulieu LM, Vitseva O, Freedman JE (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119: 6288–6295.
    1. Creighton CJ, Benham AL, Zhu H, Khan MF, Reid JG, et al. (2010) Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 5: e9637.
    1. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, et al. (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18: 610–621.
    1. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Briefings in bioinformatics 10: 490–497.
    1. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, et al. (2003) A uniform system for microRNA annotation. Rna 9: 277–279.
    1. Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, et al. (2008) Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 36: 2353–2365.
    1. Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, et al. (2008) Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Res 18: 1571–1581.
    1. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, et al. (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138: 696–708.
    1. Newman MA, Mani V, Hammond SM (2011) Deep sequencing of microRNA precursors reveals extensive 3' end modification. RNA 17: 1795–1803.
    1. Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, et al. (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21: 1450–1461.
    1. Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, et al. (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature cell biology 11: 1157–1163.
    1. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, et al. (2009) Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes & development 23: 433–438.
    1. Guo L, Li H, Lu J, Yang Q, Ge Q, et al. (2012) Tracking miRNA precursor metabolic products and processing sites through completely analyzing high-throughput sequencing data. Mol Biol Rep 39: 2031–2038.
    1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.
    1. Kendziorski CM, Zhang Y, Lan H, Attie AD (2003) The efficiency of pooling mRNA in microarray experiments. Biostatistics 4: 465–477.
    1. Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A 102: 4252–4257.
    1. Glass A, Henning J, Karopka T, Scheel T, Bansemer S, et al. (2005) Representation of individual gene expression in completely pooled mRNA samples. Biosci Biotechnol Biochem 69: 1098–1103.
    1. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME (2010) The role of let-7 in cell differentiation and cancer. Endocrine-related cancer 17: F19–36.
    1. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, et al. (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103: 5078–5083.
    1. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.
    1. Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, et al. (2009) MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94: 479–486.
    1. Yang GH, Wang F, Yu J, Wang XS, Yuan JY, et al. (2009) MicroRNAs are involved in erythroid differentiation control. J Cell Biochem 107: 548–556.
    1. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, et al. (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102: 18081–18086.
    1. Kong KY, Owens KS, Rogers JH, Mullenix J, Velu CS, et al... (2010) MIR-23A microRNA cluster inhibits B-cell development. Experimental hematology 38: 629–640 e621.
    1. Lee Y, Ahn C, Han J, Choi H, Kim J, et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.
    1. Heo I, Joo C, Kim Y-K, Ha M, Yoon M-J, et al. (2009) TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell 138: 696–708.
    1. Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, et al. (2010) A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome research 20: 1398–1410.
    1. Humphreys DT, Hynes CJ, Patel HR, Wei GH, Cannon L, et al. (2012) Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One 7: e30933.
    1. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: 479–486.
    1. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic acids research 36: D154–158.
    1. Reczko M, Maragkakis M, Alexiou P, Papadopoulos GL, Hatzigeorgiou AG (2011) Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data. Frontiers in genetics 2: 103.
    1. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial microRNA target predictions. Nature genetics 37: 495–500.
    1. John B, Enright AJ, Aravin A, Tuschl T, Sander C, et al. (2004) Human MicroRNA targets. PLoS Biol 2: e363.
    1. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.
    1. Xiao F, Zuo Z, Cai G, Kang S, Gao X, et al. (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic acids research 37: D105–110.
    1. Perron MP, Boissonneault V, Gobeil LA, Ouellet DL, Provost P (2007) Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy. Methods Mol Biol 361: 311–326.

Source: PubMed

3
S'abonner