Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke? An analysis of treatment intensity and content

Iris Brunner, Jan Sture Skouen, Håkon Hofstad, Jörg Aßmuss, Frank Becker, Hanne Pallesen, Liselot Thijs, Geert Verheyden, Iris Brunner, Jan Sture Skouen, Håkon Hofstad, Jörg Aßmuss, Frank Becker, Hanne Pallesen, Liselot Thijs, Geert Verheyden

Abstract

Background: Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task-oriented intervention (CT).

Methods: A random sample of 50 video recordings was analyzed of patients with a broad range of UL motor impairments (mean age 61y, 22 women). Patients took part in the VIRTUES trial and were randomized to either VR or CT and stratified according to severity of paresis. A standardized scoring form was used to analyze intensity, i.e. active use of the affected UL expressed in % of total time, total active time and total duration of a training session in minutes, content of training and feedback. Two raters collected data independently. Linear regression models as well as descriptive and graphical methods were used.

Results: Patients in the VR group spent significantly more time actively practicing with an activity rate of 77.6 (8.9) % than patients in the CT 67.3 (13.9) %, (p = .003). This difference was attributed to the subgroup of patients with initially severe paresis (n = 22). While in VR severely impaired patients spent 80.7 % (4.4 %) of the session time actively; they reached 60.6 (12.1) % in CT. VR and CT also differed in terms of tasks and feedback provided.

Conclusion: Our results indicate that patients with severely impaired UL motor function spent more time actively in VR training, which may influence recovery. The upcoming results of the VIRTUES trial will show whether this is correlated with an increased effect of VR compared to CT.

Trial registration: ClinicalTrials.gov NCT02079103 , February 27, 2014.

Keywords: Motor function; Neurorehabilitation; Occupational therapy; Physical therapy; Stroke; Upper limb; Virtual reality.

Figures

Fig. 1
Fig. 1
Activity rate, active time and total time for Virtual Training (VR) and conventional training (CT) for all patients (blue), and subdivided into patients with mild to moderate (green) and severe (red) paresis

References

    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–239. doi: 10.1044/1092-4388(2008/018).
    1. Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–425. doi: 10.2522/ptj.20130579.
    1. Fluet GG, Deutsch JE. Virtual Reality for Sensorimotor Rehabilitation Post-Stroke: The Promise and Current State of the Field. Curr Phys Med Rehabil Rep. 2013;1(1):9–20. doi: 10.1007/s40141-013-0005-2.
    1. Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015;51(4):497–506.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, Shaw J, Hall J, Nord P, Dukelow S, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019-27.
    1. Veerbeek JM, Koolstra M, Ket JC, van Wegen EE, Kwakkel G. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis. Stroke. 2011;42(11):3311–3315. doi: 10.1161/STROKEAHA.111.623819.
    1. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35(11):2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d.
    1. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–2058. doi: 10.1161/STROKEAHA.114.004695.
    1. Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–555. doi: 10.1097/WCO.0000000000000256.
    1. Kaur G, English C, Hillier S. How physically active are people with stroke in physiotherapy sessions aimed at improving motor function? A systematic review. Stroke Res Treat. 2012;2012:820673.
    1. Kaur G, English C, Hillier S. Physiotherapists systematically overestimate the amount of time stroke survivors spend engaged in active therapy rehabilitation: an observational study. J Physiother. 2013;59(1):45–51. doi: 10.1016/S1836-9553(13)70146-2.
    1. Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, Holper L, Hagni K, Zimmerli L, Duff A, et al. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45(9):901–907. doi: 10.1007/s11517-007-0239-1.
    1. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. doi: 10.1371/journal.pone.0087987.
    1. Timmermans AA, Spooren AI, Kingma H, Seelen HA. Influence of task-oriented training content on skilled arm-hand performance in stroke: a systematic review. Neurorehabil Neural Repair. 2010;24(9):858–870. doi: 10.1177/1545968310368963.
    1. Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements using video games: a comparison with traditional therapy for stroke rehabilitation. Neurorehabil Neural Repair. 2014;28(8):733–739. doi: 10.1177/1545968314521008.
    1. Yin CW, Sien NY, Ying LA, Chung SF, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107-14.
    1. Paquin K, Ali S, Carr K, Crawley J, McGowan C, Horton S. Effectiveness of commercial video gaming on fine motor control in chronic stroke within community-level rehabilitation. Disabil Rehabil. 2015;37(23):2184–2191. doi: 10.3109/09638288.2014.1002574.
    1. Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1(1):3. doi: 10.1007/s40120-012-0003-9.
    1. Brunner I, Skouen JS, Hofstad H, Strand LI, Becker F, Sanders AM, Pallesen H, Kristensen T, Michielsen M, Verheyden G. Virtual reality training for upper extremity in subacute stroke (VIRTUES): study protocol for a randomized controlled multicenter trial. BMC Neurol. 2014;14:186. doi: 10.1186/s12883-014-0186-z.
    1. De Wit L, Kamsteegt H, Yadav B, Verheyden G, Feys H, De Weerdt W. Defining the content of individual physiotherapy and occupational therapy sessions for stroke patients in an inpatient rehabilitation setting. Development, validation and inter-rater reliability of a scoring list. Clin Rehabil. 2007;21(5):450–459. doi: 10.1177/0269215507074385.
    1. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–872. doi: 10.1038/nrn2735.
    1. Standen PJ, Threapleton K, Connell L, Richardson A, Brown DJ, Battersby S, Sutton CJ, Platts F. Patients’ use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke. Phys Ther. 2015;95(3):350–359. doi: 10.2522/ptj.20130564.
    1. Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318. doi: 10.1371/journal.pone.0093318.
    1. Kimberley TJ, Samargia S, Moore LG, Shakya JK, Lang CE. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J Rehabil Res Dev. 2010;47(9):851–862. doi: 10.1682/JRRD.2010.02.0019.
    1. Lang CE, MacDonald JR, Gnip C. Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J Neurol Phys Ther. 2007;31(1):3–10. doi: 10.1097/01.NPT.0000260568.31746.34.
    1. Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–1698. doi: 10.1016/j.apmr.2009.04.005.
    1. Birkenmeier RL, Prager EM, Lang CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24(7):620–635. doi: 10.1177/1545968310361957.
    1. Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887. doi: 10.3389/fnhum.2013.00887.
    1. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–616. doi: 10.1097/WCO.0000000000000025.
    1. Boyd LA, Vidoni ED, Wessel BD. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change? Neurosci Lett. 2010;482(1):21–25. doi: 10.1016/j.neulet.2010.06.082.
    1. Hodges NJ, Lohse KR, Wilson A, Lim SB, Mulligan D. Exploring the dynamic nature of contextual interference: previous experience affects current practice but not learning. J Mot Behav. 2014;46(6):455–467. doi: 10.1080/00222895.2014.947911.
    1. Cirstea CM, Ptito A, Levin MF. Feedback and cognition in arm motor skill reacquisition after stroke. Stroke. 2006;37(5):1237–1242. doi: 10.1161/01.STR.0000217417.89347.63.
    1. Boyd L, Winstein C. Explicit information interferes with implicit motor learning of both continuous and discrete movement tasks after stroke. J Neurol Phys Ther. 2006;30(2):46–57. doi: 10.1097/01.NPT.0000282566.48050.9b.
    1. Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23. doi: 10.1177/1545968312449695.
    1. Spiers JA, Costantino M, Faucett J. Video technology. Use in nursing research. AAOHN J. 2000;48(3):119–124.

Source: PubMed

3
S'abonner